Fiche de mathématiques
> >

Bac ES-L 2019

Nouvelle Calédonie

Partager :

Durée : 3 heures


5 points

exercice 1 : Commun à tous les candidats

Des professeurs d'éducation physique et sportive proposent à leurs élèves de terminale un cycle de demi-fond qui consiste à courir 3 fois 500 mètres.
Le temps cumulé obtenu à l'issue d'un cycle définit une note de performance notée sur 14 points.
Le barème est différent entre les garçons et les filles.
4 classes sont regroupées et 40% des élèves sont des filles.
60% des filles obtiennent une note de performance supérieure ou égale à 7 sur 14.

Les parties A, B et C sont indépendantes.

Partie A

On choisit un élève au hasard parmi les 120 élèves.
On note :
F l'évènement : « L'élève est une fille » ;
G l'évènement : « L'élève est un garçon » ;
M l'évènement : « La note de performance est supérieure ou égale à 7 sur 14 ».
Pour tout évènement E , on note \bar E l'évènement contraire de E et P (E ) sa probabilité. Pour tout évènement F de probabilité non nulle, on note P_ F (E ) la probabilité de E sachant que F est réalisé.
1. Construire un arbre de probabilités correspondant à cette situation.
2. Déterminer P (F \cap M).
3. Sachant que P (M) = 0,64, déterminer P (G \cap M) puis en déduire P_ G (M), arrondie au millième.
4. Sachant qu'une personne interrogée a obtenu une note de performance supérieure ou égale à 7 points sur 14, quelle est la probabilité que ce soit une fille ?

Partie B

On considère un groupe de 70 filles d'un autre établissement.
On note X la variable aléatoire qui compte le nombre de filles de ce groupe ayant une note de performance supérieure ou égale à 7 sur 14.
Les notes obtenues sont indépendantes les unes des autres.
On admet que X suit la loi binomiale de paramètres n = 70 et p = 0,6.
Calculer la probabilité arrondie au dix-millième qu'exactement 30 filles obtiennent une note de performance supérieure ou égale à 7.

Partie C

Cette épreuve permet de développer sa VMA (vitesse maximale aérobie) qui correspond à une vitesse de course rapide. L'unité de mesure de la VMA est le km/h.
On choisit un élève au hasard parmi les 120 élèves.
On admet que la VMA d'un élève pris au hasard est modélisée par une variable aléatoire Y qui suit la loi normale d'espérance  \mu = 11,8 et d'écart type \sigma = 1,2.
1. Quelle est la probabilité arrondie à 10^{-3} , qu'un élève de terminale de ce lycée ait une VMA comprise entre 10 et 13 km/h ?
2. Déterminer la valeur arrondie au dixième de \alpha tel que P (Y \le \alpha) = 0,8. Interpréter cette valeur dans le contexte de l'exercice.

5 points

exercice 2 : Commun à tous les candidats


Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions posées, une seule des quatre réponse est exacte.
Une réponse exacte rapporte 0,75 point, une réponse fausse, une réponse multiple ou l'absence de réponse ne rapporte ni n'enlève de point.
Aucune justification n'est demandée.
Indiquer sur la copie le numéro de la question et recopier la lettre de la réponse choisie.

Partie A

1. Soit f la fonction continue et dérivable sur ]0 ; + infini[ définie par f(x)=\dfrac{\ln x}{x}.
La valeur exacte de f'(\text{e}) est :

\begin{matrix} \textbf{a}. 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ \  &\textbf c. 1 \\ \textbf b. \dfrac{1}{\text e}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ & \textbf d.\text e^2 \end{matrix}

2. Entre janvier 2005 et décembre 2012, le prix hors taxe du tarif réglementé du gaz a augmenté de 80%.
Quel est le taux annuel d'augmentation du prix du gaz sur la même période arrondi à 0,01% ?

\begin{matrix} \textbf{a}. 10\% \ \ \ \ \ \ \ \ \  \ \ \ \  &\textbf c. 6,75\% \\ \textbf b. 7,62\% \ \ \ \ \ \ \ \ \ \ & \textbf d. 8,76\% \end{matrix}

3. Soit (u _n ) la suite géométrique de raison q = 1,05 et de premier terme u _1 = 3.
La valeur exacte de S = u_1 + u_2 + u_3 +\dots + u_{49} est égale à :

\begin{matrix} \textbf{a}. S=\dfrac{1-1,05^{49}}{1-1,05} \ \ \ \ \  &\textbf c. 595,280 \\ \ \ \ \ \   \ \textbf b. S=3\times \dfrac{1+1,05^{49}}{1+1,05} \ \ \ \ \ \ \ \  \ \ \ & \textbf d. S=3\times \dfrac{1-1,05^{49}}{1-1,05} \end{matrix}


4. Lors du passage en caisse dans un supermarché, on considère que le temps d?attente d'un client, exprimé en minute, suit la loi uniforme sur l'intervalle [0 ; 12].
Quelle est la probabilité que le temps d'attente d'un client soit compris entre 2 et 5 minutes ?

\begin{matrix} \textbf{a}. \dfrac 1 4 \ \ \ \ \ \ \ \ \  \ \ \ \  &\textbf c. \dfrac{1}{12} \\ \\ \textbf b. \dfrac{7}{12}\ \ \ \ \ \ \ \ \ \  \ \ \ & \textbf d.\dfrac 1 3  \end{matrix}


Partie B

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier.
Une réponse exacte justifiée rapporte 1 point, une réponse fausse, non justifiée ou l'absence de réponse ne rapporte ni n'enlève aucun point.
1. Lors d'une élection, un candidat sollicite un institut de sondage pour qu'il détermine un intervalle de confiance au niveau de confiance 0,95 de la proportion des intentions de vote en sa faveur.

Affirmation 1 : Afin que cet intervalle ait une amplitude inférieure ou égale à 0,02, l'institut de sondage doit interroger au minimum 10 000 personnes.

2. On considère une variable aléatoire X suivant une loi normale de moyenne 6.
On donne ci-dessous la courbe qui représente la densité f associée à la variable aléatoire X .
La partie grisée vaut 0,95 unité d'aire.
Bac ES-L obligatoire Nouvelle Calédonie 2019 : image 5

Affirmation 2 : L'écart type de X est égal à 6.

5 points

exercice 3 : Candidats de ES n'ayant pas suivi l'enseignement de spécialité et candidats de L

Une colonie de vacances héberge des enfants dans des tentes de 10 places chacune. Pendant l'été 2017, 160 enfants ont participé à cette colonie.
À la suite d'une étude prévisionnelle, on estime que, chaque année, 80% des enfants déjà inscrits se réinscrivent l'année suivante et 50 nouveaux enfants les rejoignent.
1. a. Donner une estimation du nombre d'enfants inscrits à l'été 2018.
1. b. Donner le nombre minimal de tentes nécessaire pour loger l'ensemble des inscrits pendant l'été 2018.

2. Soit (u n ) la suite numérique qui modélise le nombre d'inscrits lors de l'année 2017 + n. Ainsi u_0 = 160.
Expliquer pourquoi, pour tout entier naturel n, on a : u_{n+1} = 0,8_n + 50.

3. Voici la copie d'écran d'une feuille de tableur utilisée pour déterminer les valeurs des termes de la suite.
Bac ES-L obligatoire Nouvelle Calédonie 2019 : image 3

3. a. Quelle formule peut-on saisir dans la cellule C2 pour obtenir, par recopie vers la droite, le nombre d'inscrits l'année 2017 + n ?
3. b. Recopier et compléter ce tableau en arrondissant chacune des valeurs à l'entier.
3. c. Donner une estimation du nombre d'inscrits en 2021.

4. Soit (v_n ) la suite numérique dont le terme général est défini par v_n = u_n - 250 pour tout n appartient N .
4. a. Montrer que la suite  (v_n ) est géométrique de raison 0,8 et préciser son terme initial.
4. b. Exprimer v_n en fonction de n, pour tout entier naturel n.
4. c. Montrer que, pour tout n appartient N , u _n = 250 - 90 × 0,9 ^n .
4. d. Déterminer la limite de la suite (u_n ). Interpréter ce résultat dans le contexte de l'exercice.

5. En 2017, la colonie comptait 22 tentes.
Afin de déterminer à partir de quelle année il sera nécessaire de construire une nouvelle tente, on propose l'algorithme ci-dessous :
Bac ES-L obligatoire Nouvelle Calédonie 2019 : image 2

5. a. Recopier et compléter cet algorithme afin qu'il permette de répondre au problème.
5. b. Quelle est la valeur de N obtenue après exécution de cet algorithme ?

5 points

exercice 4 : Commun à tous les candidats

On considère la fonction f définie et dérivable sur [-2 ; 6] dont la courbe représentative \mathcal C est donnée ci-dessous.
Le point A de coordonnées (0 ; 3) est l'unique point d'inflexion de la courbe \mathcal C sur l'intervalle [-2 ; 6].
La droite \mathcal Test la tangente à la courbe \mathcal C au point A.
La courbe \mathcal C admet une tangente horizontale au point B d'abscisse -1.
Bac ES-L obligatoire Nouvelle Calédonie 2019 : image 1


Partie A

En utilisant le graphique, répondre aux questions suivantes :
1. Déterminer f (0).
2. Déterminer f ' (0). En déduire une équation de la tangente à la courbe C au point A.
3. Déterminer le signe de f ' sur [-2 ; 6].
4. Donner la convexité de f sur [-2 ; 6].
5. Donner un encadrement par deux entiers consécutifs de I =\int_{-1}^0 f(x) \,\text d x

Partie B

La fonction f est définie par f (x) = (x + 2) e^{-x} + 1 pour tout x appartient [-2 ; 6].
1. Déterminer la valeur exacte de f (6) puis en donner la valeur arrondie au centième.
2. Montrer que, pour tout x appartient [-2 ; 6],  f ' (x) = (-x - 1) e^{-x }.
3. Étudier le signe de f' sur [-2 ; 6] puis donner le tableau des variations de f sur [-2 ; 6].
4. Un logiciel de calcul formel donne l'information suivante :
Bac ES-L obligatoire Nouvelle Calédonie 2019 : image 4

4. a. Déterminer une primitive de f sur [-2 ; 6].
4. b. Calculer la valeur moyenne de f sur [-1 ; 0]. On donnera sa valeur exacte puis sa valeur arrondie au dixième.
Publié le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT)
Inscription Gratuite se connecter
Merci à
malou Webmaster
pour avoir contribué à l'élaboration de cette fiche


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1372 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !