Bonjour
j'aimerai avoir une confirmation sur le Barycentre
Enoncé
(R;-2) (T;5)
-2(GT+TR)+5GT=0
3(GT)+2(TR)=0
GT=-2TR/3 = GT=2/3 RT
TG=2/3 TR
G T R
!_____!__________!
Le point G se trouve a l'extérieur de TR parce que l'énoncé va de R
vers T ou pas
qu'est ce qui justifie que G soit à l'extérieur de T R et pas a l'intérieur de T R
Si quelqu'un peut m'apporter une réponse
Merci par avance
Bonjour
Vous ne précisez pas ce qu'est G. On suppose donc que c'est le barycentre des deux points.
Une erreur ligne 2
Par conséquent, les vecteurs et sont de sens contraire.
T est donc entre G et R.
Merci de votre réponse
Vous dites que les vecteurs TR et TG sont de sens contraires
Pouvez vous préciser
j'ai GT=2/3 de TR (excusez moi pour les flèches)
donc TG=2/3 de RT (ce qui est normal puisque j'ai inversé GT)
Vous comparez quoi le TR de GT avec RT de TG
c'est encore floue dans ma tête.
Apparemment, le signe est revenu la ligne d'après
vous avez donc
soit encore
on a donc bien deux vecteurs de sens contraires
On ne peut aller en partant de T dans le même sens pour aller à G ou pour aller à R.
re bonjour Monsieur Hekla
donc c'est TG= -2/3 TR (en effet)
c'est le "moins" qui permet de dire que G(barycentre) est a l'extérieur
de TR et de prendre les 2/3 de TR à par partir de T
C'est bien cela
Oui, cela permet d'affirmer qu'en partant de T le sens est différent.
Cela montre bien que T est entre les deux, donc G est bien à l'extérieur du segment [TR]
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :