Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

continuité dérivation exponentielle et suite

Posté par
HELP_
12-12-12 à 14:58

Bonjour j'aurais besoin d'aide pour un excercice.
A. On donne, dans un repère orthonormé, la courbe C représentative de la fonction f définie sur R par f(x)=xe-x

1. Démontrez que la droite d d'équation y=x est tangeante à C en x=0
2.a) Démontrez que pour tout m appartenant à l'intervalle ]0; 1/e [ , l'équation f(x)=m a deux solutions.
b) Dans le cas où m=1/4 on note et les solutions ( < ).
Déterminez un encadrement de alpha d'amplitude 10-2

B. On considère la suite (un) définie par u0= et pour tout n de N, un+1 = f(un)

1.a) Reproduisez la figure unité 5cm
b) conjecturez les variations et la convergence de (un)
2.a) Démontrez par récurrence que pour tout entier naturel n, un > 0
b) Démontrez que (un) est croissante
c) déduisez que la suite (un) converge vers un nombre l que vous determinerez.


Voilà, je suis arrivée à la question 2 sur laquelle je suis bloqué puisqu'en dérivant f je trouve qu'elle est strictement croissante sur l'intervalle demandé donc impossible d'avoir f(x) = m qui a deux solutions. Pouvez vous m'aider ?

Posté par
littleguy
re : continuité dérivation exponentielle et suite 12-12-12 à 15:05

Bonjour

Qu'as-tu trouvé comme dérivée ?

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:05

Bonjour

Que trouves-tu pour la dérivée?

Posté par
littleguy
re : continuité dérivation exponentielle et suite 12-12-12 à 15:16

Bonjour Camélia

HELP ne semble plus appeler au-secours...

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:17

Bonjour littleguy Au moins nous sommes unanimes!

Posté par
HELP_
re : continuité dérivation exponentielle et suite 12-12-12 à 15:17

f'(x) = e-x-xe-x
     = e-x(1-x)

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:19

Bon... Et alors ce truc ne change pas de signe?

Posté par
HELP_
re : continuité dérivation exponentielle et suite 12-12-12 à 15:22

Non puisque e-x  > 0
et 1-x s'annule en x=1 mais l'intervalle est ]0;1/e[

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:24

Non, l'intervalle n'est pas ce que tu dis... Il faut montrer que pour m\in]0,1/e[ l'équation f(x)=m a deux solutions réelles, n'importe où!

Posté par
HELP_
re : continuité dérivation exponentielle et suite 12-12-12 à 15:26

Oui mais lorsque m se situe entre 0 et 1/e le signe de f(x) ne change pas ?

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:32

Et pourquoi veux-tu qu'il change? Trace complètement f tu verras!

Posté par
HELP_
re : continuité dérivation exponentielle et suite 12-12-12 à 15:35

Oui f est tracée sur le livre et il y a un changement de variation en 1 f est croissante puis décroissante donc f' est positive puis négative.
Faut-il que je fasse la bijection sur ]-;1[
et sur [1;+[ ?

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:36

Ca c'est une bonne idée! mais l'important c'est de bien prendre en compte la valeur f(1)

Posté par
HELP_
re : continuité dérivation exponentielle et suite 12-12-12 à 15:39

J'avais fait une confusion entre m en abscisse et f(x) =m.
f(1) = 1/e
lim en -inf = -inf
lim en +inf = 0
Donc dans chaque intervalle on a une solution ce qui nous donne deux solutions. Merci j'essaye de continuer.

Posté par
Camélia Correcteur
re : continuité dérivation exponentielle et suite 12-12-12 à 15:40

Bien, là tu y es!



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1742 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !