Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Exercice Ln Terminale

Posté par
valtor94
30-01-21 à 19:39

Bonjour je n'arrive pas à trouver la réponse et la méthode pour cette exercice je vous en remercie pour votre aide.

Pour l'exercice 1 j'ai trouver pour la question
1) J'ai trouver qu'elle devra attendre au moins 12,5 minutes pour que son thé refroidisse à au moins 50°, en utilisant le produit en croix mais je pense qu'il fallait utiliser une autre méthode
2) Pour la limite j'ai f= + infinie

Pourriez me dire qu'elle méthode je dois utiliser svp.

Exercice :

      Lila se prépare une tasse de thé. A l'instant initial t = 0, la température de son thé est de 100°C. Cinq minutes plus tard, elle est de 80°C. On admet que la température du thé ( t), en °C, est donnée par :f (t ) = =( ae^bt ) +25
où t désigne le temps en minutes et a et b sont des constantes réelles.

1)  Lorsque son thé est à plus de 50 °C, Lila estime qu'il est trop chaud pour le boire. Combien de temps devra-t-elle attendre pour boire son thé ?
On donnera le résultat en minutes et secondes.

2) Calculer lim→+∞( ), puis interpréter ce résultat

Posté par
Yzz
re : Exercice Ln Terminale 30-01-21 à 19:45

Salut,

Je ne vois pas bien ce que vient faire le produit en croix ici.
On te donne la température en fonction du temps : f (t ) = aebt +25.
Il y a deux paramètres à déterminer : a et b.
Cela se fait à l'aide des deux données du texte :

Citation :
A l'instant initial t = 0, la température de son thé est de 100°C. Cinq minutes plus tard, elle est de 80°C.

Posté par
Yzz
re : Exercice Ln Terminale 30-01-21 à 19:46

Citation :
2) Pour la limite j'ai f= + infinie
Donc concrètement, plus on attend, plus la température augmente, à dépasser même celle du soleil par exemple.
C'est bien ça ?

Posté par
valtor94
re : Exercice Ln Terminale 30-01-21 à 20:50

J'ai beau chercher je ne trouve pas les valeurs de a et b pour f(0)=100.
Les valeurs de a et b sont-elles, a=100 et b=80 vu que l'ont a que sa comme donné. Merci

Posté par
Pirho
re : Exercice Ln Terminale 30-01-21 à 21:22

Bonjour,

en attendant le retour de Yzz que je salue

tu sais que f(t)=a\,e^{bt}+25

comment écris-tu le second membre de ton équation si f(0)=100

et si f(5)=80

les 2 équations te permettront de déterminer  a\,et\, b

Posté par
valtor94
re : Exercice Ln Terminale 31-01-21 à 11:15

Bonjour j'ai essayer de résoudre l'équation en isolant a et de trouver les valeurs de a et b

J'ai trouver a= e^bt /75
Mais je ne pense pas que c'est sa puisque je n'arrive pas a calculer b. Je ne vois vraiment pas se qu'il faut faire .

Posté par
Pirho
re : Exercice Ln Terminale 31-01-21 à 11:44

pour le 1er point (0,100) que vaut e^{b\,t} ?

Posté par
valtor94
re : Exercice Ln Terminale 31-01-21 à 15:24

Le premier point avec (0;100),

e^bt=1    car e^(100x0)=e^0=1

Je ne vois pas d'autre solution

Posté par
Pirho
re : Exercice Ln Terminale 31-01-21 à 15:32

donc 100 = ?

remplace le point d'interrogation par la bonne valeur du 2d membre

Posté par
valtor94
re : Exercice Ln Terminale 31-01-21 à 15:42

Donc a=75 et b=100 ?

Posté par
Pirho
re : Exercice Ln Terminale 31-01-21 à 15:44

a=75 , OK

comment trouves-tu b=100?

Posté par
valtor94
re : Exercice Ln Terminale 31-01-21 à 16:07

On sait que pour t=0 la température est de 100 degré donc par déduction b=100 car il reste que sa comme donnée.

Posté par
Pirho
re : Exercice Ln Terminale 31-01-21 à 16:24

valtor94 @ 31-01-2021 à 16:07

On sait que pour t=0 la température est de 100 degré donc par déduction b=100 car il reste que sa comme donnée.
  

ta réponse c'est un peu du n'importe quoi!

tu as f(t)=a e^{b\,t}+25~~(1)

pour t=0,\, f(t)=f(0)=100 d'où 100= a\, e^{0}+25 et effectivement 100=a\times 1 +25 soit a=75

(1) peut s'écrire, en remplaçant a   par 75,  f(t)=75\, e^{b\,t}+25


donc tu ne connais pas encore la valeur de b

pour obtenir la valeur de b tu utilises le point de coordonnées (12.5;50) et f(t)=75\, e^{b\,t}+25



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1580 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !