Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

la fonction indicateur φ d'Euler

Posté par
cherisa
28-12-08 à 20:07

soit Soit n ∈ N*. On définit φ(n) comme le nombre d'entiers compris ( ausens large) entre 1 et n-1 et premier avec n.
1.Démontrer que pour tout n ∈ N*, 1≤φ(n)≤n-1.
2.Calculer φ(n) pour 2≤n≤12
3.Démontrer que, si p est un nombre premier, alors φ(p)=p-1
4.démontrer que, si p est un nombre premier, alors φ(p²)=p²-1(p-1)=p(p-1)

il y a encore des questions après.
pour le 1 ça me parait tellement évident que je ne sais pas comment démontrer par des calculs.
le 2 et le 3 je les ai fait, mais le 4 je n'arrive pas.
Pourriez vous m'aider s'il vous plait? Merci

Posté par
xunil
re : la fonction indicateur φ d'Euler 28-12-08 à 20:57

bonsoir,

1) la définition n'est pas claire ?

4) p, 2p, 3p ...., (p-2)p et (p-1)*p ne sont pas premiers avec p^2 et ce sont les seuls.

il y en a exactement p-1

ainsi on a bien p^2-1-(p-1) entiers conpris entre 1 et p^2-1 premiers avec p^2.

sauf erreur

Posté par
cherisa
re : la fonction indicateur φ d'Euler 28-12-08 à 21:43

Merci pour la question 4.
pour la 1ere question c'est l'hypothese que l'ennoncé nous a donnée, je vois pas pourquoi il nous demande de démontrer. Et puis c'est évident que 1≤φ(n)≤n-1 puisque φ(n) est le nombre d'entiers plus petit et premier avec n, donc forcément φ(n)≤n-1.

la question 5 je l'ai faite.
question 6:
a) démontrer que le, pour tout a ∈ N*
  pgcd (a,n)=1
  pgcd (a,m)=1  équivaut à pdcd (a,nm)=1
cette kestion je l'ai faite, mais j'arrive pas à faire le b, voici la question.

b) On note U1,U2,...Uφ(n) tous les entiers naturels (compris au sens large entre 1 et n-1) premiers avecn, et on note V1,V2..Vφ(m) tous les entiers naturels (compris au sens large entre 1 et m-1) premiers avec m.
Montrer alors que tous les entiers naturels compris au sens large entre 1 et nm-1 et premiers avec nm, sont les entiers UiVj avec : 1≤ i ≤ φ(n)   et 1≤ j ≤ φ(m).

Posté par
cherisa
re : la fonction indicateur φ d'Euler 30-12-08 à 11:25

de l'aide s'il vous plaît.....

Posté par
xunil
re : la fonction indicateur φ d'Euler 30-12-08 à 12:15

je peux pas cette aprem mais j'y réfléchirais

Posté par
xunil
re : la fonction indicateur φ d'Euler 31-12-08 à 16:02

il faut:

vérifier que les u_iv_j sont effectivement premiers avec mn (ça c'est direct vu la question précédente) mais il faut en outre montrer que tous les entiers premiers avec mn sont de la forme u_iv_j :pour cette partie je n'ai pas de réponse claire .

si quelqu'un pourrait poursuivre car les jours à venir vont être chargés...

Posté par
cherisa
re : la fonction indicateur φ d'Euler 31-12-08 à 17:51

mais pour moi UiVj premiers avec mn n'est pas su direct.
On a:

Ui^n=1
Vj^m=1
n^m=1
d'apres le a on a
Uim^n=1 et Vjn^m=1 et après je sais pas quoi faire. J'ai utilisé le théorème de Bezout avec un coupe, mais je trouve pas que UiVj^mn=1

Si seulement quelqu'un pouvait m'aider....

Posté par
cherisa
re : la fonction indicateur φ d'Euler 04-01-09 à 17:03

s'il vous plait T_T

Posté par
cherisa
re : la fonction indicateur φ d'Euler 10-01-09 à 21:53

help please...



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1724 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !