Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Similitude et suite

Posté par
Rosada
12-02-11 à 12:16

Bonjour, je suis en TS spé maths et je bloque à un exercice de spé qui est le suivant :

Le plan est muni d(un repère orthonormal direct (O,u,v).
On considère la transformation f du plan dans lui-même qui a tout point M d'affixe z associe le moint M' d'affixe:
z'= (1/2)iz + (1-3i)/2

1.Montrer que f est une similitude directe dont on précisera le centre omega , le rapport k et l'angle téta.

2.Soit Mo le point d'affixe 1+(4 racine de 3)+3i. Pour tout entier naturel n, le point Mn+1 est défini par Mn+1 = f(Mn).
  a)En utilisant la première question, calculer omégaMn en fonction de n.
  b)Placer le point Mo et construire les points M1, M2, M3 et M4.
  c)A partir de quel rang no (n zéro) a-t-on:"pour tout n supérieur ou égale a no (n zéro), Mn appartient au disque de centre oméga et de rayon r=0.05"

3.a)Calculer MoM1.
  b)Pour tout entier naturel n, on note dn=MnMn+1. Montrer que (dn) est une suite géométrique dont on précisera le premier terme et la raison.
  c)On note Ln=do+d1+d2+...+dn. Calculer Ln en fonction de n et en déduire le limite de Ln en +oo (+ l'infini).

4.Pour tout entier naturel n non nul, on note Gn l'isobarycentre des points Mo, M1, M2,...,Mn.
  a)Montrer que pour tout entier n strictement supérieur a 0, omégaGn est inférieur ou égal a 16/(n+1).
  b)En désuire la position limite de point Gn losque n tend vers +oo (+ l'infini).

MES REPONSES :
1- f est une similitude de rapport 1/2, d'angle /2 et centre (1-i)

2- je bloque ici ...

Posté par
Rosada
re : Similitude et suite 12-02-11 à 12:19

J'ai trouvé la réponse 2 :
On peut écrire f sous la forme z' - = i/2(z-)
Donc
zn+1 - = i/2(zn -)
= i/2 |zn -|

donc Mn+1 = 1/2Mn

Posté par
edualc
re : Similitude et suite 12-02-11 à 15:22

bonjour

Tu viens de montrer que un = Mn est une suite géométrique de raison 1/2.
Il te suffit d'appliquer la formule de ton cours.

Posté par
Rosada
re : Similitude et suite 14-02-11 à 18:42

Oui j'ai trouvé une suite géométrique de raison 1/2 : Mn = M0 * (1/2)n
avec M0 = |1+43 + 3i -1+i| = 8

c) Mn0.05
n7.32

3-a) M0M1 = |zM1 - zM0| or M1 = 23 + 2i |zM1-| = 23 + 2i
zM1 = 23 + 1 + i

Donc M0M1 = 4

b) dn =MnMn+1  JE BLOQUE ICI.
Veuillez m'aider s'il vous plait

Posté par
edualc
re : Similitude et suite 14-02-11 à 18:56

bonsoir,

3. a)

M1 est une distance et non un complexe
tu n'as pas le droit de supprimer le module pour calculer zM1

b) Mn a pour image Mn+1
Mn+1 a pour image Mn+2
utilise la définition d'une similitude

Posté par
Rosada
re : Similitude et suite 14-02-11 à 19:04

3.a) Je ne sais finalement toujours pas comment m'y prendre...:/

b) J'ai trouvé que dn = 1/2Mn donc on a bien une suite géométrique.
c) Quand n tend vers + (1/2)^n tend vers 0 car -1<1/2<1
ln = d0 + d1 + d2 +...+dn
donc ln = d0 * 1-(1/2)^n / 1-1/2
donc lim ln quand n tend vers + est égale à 2d0.

4.a)
Si G est l'isobarycentre alors on peut écrire:
(1+1+...+1)vectGn = vectM0 + vectM1 +...vectMn
(n+1)Gn = M0+...
Je ne vois pas comment apparait le 16

Posté par
edualc
re : Similitude et suite 14-02-11 à 19:57

bonsoir

3.a) M0M1 est un triangle rectangle. On applique Pythagore

b) attention, il y a n+1 termes dans la somme


4. a) a partir de ton égalité vectorielle,
on applique la propriété
|| + ||||||+||||



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1741 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !