Sur la figure, M appartient au cercle trigonométrique, C et S sont
des projetés orthogonaux du point M sur les axes,T est le point
d'intersection de la droite (OM) et la tangente delta au cerle
au point I.
1.montrer que IT=tan x (<---pourtant sur la figure c'est plutot l'opposé
de l'angle x)
2. calculer les aires A1 et A2 des triangles OIM et OIT PUIS L'AIRE
a DU SECTEUR ANGULAIRE OIM ( qu'est ce qu'un secteur angulaire?)
3. En remarquant que l'on a A1<ou egal à A < ou egal à A2 (comment
on peut dire ca alors que l'on a aucune valeur?) montrer que
pour tout reel x de l'interval [0 (non compris), pi/2]
sinx <ou egal a x <ou egal a tan x
en deduire que , pour tout x element de [ 0 non compris; pi/2 (non compris]
xcosx< ou egal à sin x <ou egal a x
4.En utilisant xcosx< ou egal àsinx<ou egal a x, justifier que pour tout
x de l'inteervalle [0,pi/2] <--non compris
cosx< sinx/x<1
5voir si cela est toujours vraie pour tout x element de l'intervalle
[ -pi/2;0]<--non compris
6.donner la limite de cos x sur +infinie et en deduire que la limite de sinx/x
pour x tend vcers 0 est 1.
Voila !
merci de m'aider parce que je n'y arrive pas!
seulement essayez de m'aider pour que je comprenne !
merci.
bye!
merci!
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :