Fiche de mathématiques
> >

Grandeurs quotients courantes : vitesses moyennes

Partager :

Fiche relue en 2016.

1. Vitesse moyenne

La vitesse moyenne v d'un élément mobile sur une distance d est le quotient de la distance d sur le temps t mis par le mobile pour parcourir la distance.

\text{vitesse moyenne}=\frac{\text{distance parcourue}}{\text{temps du parcours}}
v = \frac{d}{t}

Exemple :
Un coureur court 5 kilomètres en une demi-heure.
Sa vitesse moyenne est \frac{5}{0,5} = 10 km/h.

Remarque :
La vitesse moyenne est comprise entre la plus basse vitesse observée pendant le trajet et la plus haute vitesse.

Exemple : Si en voiture, l'aiguille du compteur reste entre 80 km/h et 90 km/h, la vitesse moyenne sera comprise entre 80 et 90 km/h.

Si un trajet est réalisé à vitesse constante, la vitesse moyenne est égale à cette vitesse constante.
La formule v = \frac{d}{t} donne deux autres formules applicables selon les informations connues.
Si on connaît la vitesse moyenne v et le temps de parcours t, on obtient la distance parcourue d avec d = v \times t
\text{distance parcourue} = \text{vitesse moyenne} \times \text{temps de parcours}

Exemple :
Un piéton marche à la vitesse moyenne de 6 km/h. Combien parcourt-il en une heure et demie ?
Une heure et demie, c'est 1,5 heure.
Il parcourt donc en une heure et demie, 6 \times 1,5= 9 km.
Si on connaît la vitesse moyenne v et la distance parcourue d, on obtient le temps de parcours t avec t=\frac{d}{v}
\text{temps de parcours}=\frac{\text{distance parcourue}}{\text{vitesse moyenne}}

Exemple :
Un automobiliste doit parcourir 420 kilomètres sur autoroute. Il roule à une vitesse moyenne de 120 km/h. Combien de temps lui faudra-t-il ?

Son temps de parcours sera de \frac{420}{120} = 3,5
Il mettra 3,5 heures soit 3h30 pour parcourir les 420 kilomètres.

2. Unités de vitesse

L'unité de vitesse la plus employée dans la vie courante est le kilomètre par heure, notée km/h ou km.h-1.
Cette unité est le quotient d'une unité de distance ( km ) par une unité de temps ( h ). La vitesse est dite grandeur quotient.

En science cependant, l'unité de base des distances étant le mètre ( m ) et l'unité de base des durées étant la seconde ( s ), l'unité de base des vitesses est le mètre par seconde, notée m/s ou m.s-1.

Pour passer d'une unité de vitesse à une autre, il faut convertir à la fois les distances et les durées.
Exemples :

a ) Les champions du 100 mètres courent la distance en moyenne en 10 secondes.

Leur vitesse moyenne est donc \frac{100}{10} = 10 m/s.
Combien cela fait-il en km/h ?

Il y a 60 \times 60 = 3600 secondes dans une heure.
A la même vitesse que sur 100 mètres, ils courraient 10 \times 3 600 = 36 000 m en une heure.
36 000 m = 36 km.
Leur vitesse moyenne sur 100 mètres est donc de 36 km/h.

b ) Une voiture roule à 100 km/h.
Combien cela fait-il en m/s ?

v = \frac{100 km}{1 heure} = \frac{100 000 m}{3 600 s} = 27,8 m/s arrondi au dixième de m/s.
Publié le
ceci n'est qu'un extrait
Pour visualiser la totalité des cours vous devez vous inscrire / connecter (GRATUIT)
Inscription Gratuite se connecter


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1256 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !