Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

DM Math

Posté par
maelylena
25-10-16 à 08:54

Bonjour

J'ai un calcul à faire sans calculatrice et je bloque sur l'opération
2/√3 -1
je dois décomposer et donner un résultat

Posté par
malou Webmaster
re : DM Math 25-10-16 à 09:09

Bonjour
tu as écrit \dfrac{2}{\sqrt 3}} - 1
c'est bien ce que tu voulais écrire, sinon, lis ceci :

attentionextrait de c_faq la FAQ du forum :

Q27 - Comment bien écrire une formule ?

Posté par
maelylena
re : DM Math 25-10-16 à 09:16

pas facile d'écrire une équation avec des racines, le -1 est à coté du √3  sous la barre de fraction
il n'y a pas de parenthèse et je dois faire le calcul sans la calculatrice qui elle ne doit me servir qu'à vérifier que mon résultat est juste

2/(√(3 )-1)

Posté par
malou Webmaster
re : DM Math 25-10-16 à 09:20

tu n'as pas de parenthèse sur ton papier car tu as une barre de fraction
et tu as du apprendre que la barre de fraction tient lieu de parenthèse...
donc sur une écriture en ligne tu dois effectivement écrire 2/((3 )-1)

(sous ton message clique sur , tu as le symbole )

multiplie haut et bas par le conjugué du bas, c'est à dire par 3 + 1

Posté par
maelylena
re : DM Math 25-10-16 à 09:44

donc cela me donne
2 x (3-1) / (3-1)x(3-1)
donc
23-1 /
donc
23-1 /9
est ce que c'est bon

Posté par
malou Webmaster
re : DM Math 25-10-16 à 09:48

non..
j'ai dit de multiplier haut et bas par 3 + 1

prends l'habitude de mettre * pour le signe multiplier et non x....à l'écran le x variable et le x multiplier ne peuvent pas se distinguer
recommence un peu....à toi

Posté par
maelylena
re : DM Math 25-10-16 à 09:49

pourquoi je dois multiplier avec + 1 alors que mon opération est avec -1 ?

Posté par
malou Webmaster
re : DM Math 25-10-16 à 09:50

bonne question....
parce que ainsi, tu vas obtenir au dénominateur une identité remarquable et tu n'auras plus de racine carrée au dénominateur

Posté par
maelylena
re : DM Math 25-10-16 à 09:56

2 * (3+1) / (3-1)*(3+1)
donc
23+2 / 3²-3+3
donc
23+2/
donc
23+2 / 9
après je bloque

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:04

j'espère que tu fais tout ça au brouillon avant de l'écrire sur le site
non, ce n'est pas ok
il manque les parenthèses

et calcule moi séparément le dénominateur
(3-1)*(3+1) ça fait combien ?

Posté par
maelylena
re : DM Math 25-10-16 à 10:19

oui je fais tout au brouillon et en plus je mets bien les parenthéses et je comprends pas je les vois bien les parenthèses sur le site
(3-1)*(3+1)
je distribue
(3*3)-(3+1)+(1*3)+(1*1)
3²-3+3+1
3²+1
9+1
10

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:25

mais non, tu dois continuer à en mettre des parenthèses, pas seulement à la 1re ligne, regarde

maelylena @ 25-10-2016 à 09:56

2 * (3+1) / (3-1)*(3+1)
donc
(23+2 )/ (3²-3+3)
....etc.....

mais bon, ça c'était faux
alors
10h19
tu as une erreur de signe (impardonnable quand on connaît ses identités remarquables : (a+b)(a-b)=a²-b² )
revois tes signes du développement du dénominateur, tu y es presque

Posté par
maelylena
re : DM Math 25-10-16 à 10:31

(3-1)*(3+1)
3²-1²
9-1
8

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:33

oui, c'est ok ça !

donc cela fait 2 * (3+1) / 8 soit ...
tu peux simplifier par 2 numérateur et dénominateur maintenant

malou edit > ma réponse est fausse....cela ne fait pas 8
oups !

Posté par
maelylena
re : DM Math 25-10-16 à 10:35

23/4

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:36



\dfrac{2(\sqrt 3 + 1)}{8}=\dfrac{2(\sqrt 3 + 1)}{2\times 4}=\dots

Posté par
maelylena
re : DM Math 25-10-16 à 10:43

2(3+1)/8
23+2/2*4
donc je simplifie et enleve le 2
je suis paumée

Posté par
cocolaricotte
re : DM Math 25-10-16 à 10:46

Bonjour à tous

A force de voir des erreurs on finit par ne plus voir les plus grosses .

(\sqrt{3} - 1) (\sqrt{3} + 1)  cela ne fait pas 9 - 1 mais 3 - 1

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:48

tu as appris à faire ça au collège...
simplification de fraction

si tu as \dfrac{2a}{2b}, cela vaut \dfrac a b

et tu peux écrire

\dfrac{2a}{2b}=\dfrac{\cancel{2}a}{\cancel{2}b}==\dfrac a b

donc ici

\dfrac{2(\sqrt 3 + 1)}{8}=\dfrac{2(\sqrt 3 + 1)}{2\times 4}=\dots

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:50

Citation :
(\sqrt{3} - 1) (\sqrt{3} + 1) cela ne fait pas 9 - 1 mais 3 - 1

exact, merci !! donc 2 pour le dénominateur maelylena avec la remarque de cocolaricotte

\dfrac{2(\sqrt 3 + 1)}{2}=\dfrac{2(\sqrt 3 + 1)}{2\times 1}=\dots

Posté par
maelylena
re : DM Math 25-10-16 à 10:50

3+1/4

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:52

alors si c'était 8, ce serait OK avec les parenthèses...grrr
mais regarde au dessus, j'ai laissé passer une erreur
regarde 10h50

Posté par
maelylena
re : DM Math 25-10-16 à 10:54

donc juste 3 +1

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:57

OK ! (excuse oi pour le dénominateur tout à l'heure ! )
c'est bon cette fois !
retiens la méthode, c'est ça qui est important dans cet exercice : avoir le réflexe de multiplier haut et bas par ce qu'on appelle la quantité conjuguée
cela te resservira !
allez, bon vent ! ....

Posté par
maelylena
re : DM Math 25-10-16 à 10:58

en tout cas merci pour votre patience et votre disponibilité

Posté par
malou Webmaster
re : DM Math 25-10-16 à 10:59

de rien !....



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1734 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !