Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

Duplication de Cosinus

Posté par tutur32 (invité) 20-05-07 à 16:09

Probleme :
X est un réel de ]0;/2[
Sur le cercle trigonométrique , M est le point associé à x et P celui associé à 2x. H est le projeté orthogonal de P sur l'axe des abscisses, et I le point d'intersection des droites (AP) er (OM)
1°) Quelle est la nature de OAP ? Et déduire que les droites (OM) et (AP) sont perpendiculaires, et que I est le milieu de [AP]
2°) Montrer que : OI = cos x ; IA = sin x ; PH = sin 2x
3°) En calculant de deux manières differentes l'aire de OAP, montrer que : sin (2x) = 2sin x cos x

J'ai réussi à démontrer que le triangle était isocèle mais j'arrive pas a démontrer que (OM) et (AP) sont perpendiculaires...et puis le reste je vois vraiment pas...

Duplication de Cosinus

Posté par tutur32 (invité)Duplication de Cosinus 20-05-07 à 16:10

Probleme :
X est un réel de ]0;/2[
Sur le cercle trigonométrique , M est le point associé à x et P celui associé à 2x. H est le projeté orthogonal de P sur l'axe des abscisses, et I le point d'intersection des droites (AP) er (OM)
1°) Quelle est la nature de OAP ? Et déduire que les droites (OM) et (AP) sont perpendiculaires, et que I est le milieu de [AP]
2°) Montrer que : OI = cos x ; IA = sin x ; PH = sin 2x
3°) En calculant de deux manières differentes l'aire de OAP, montrer que : sin (2x) = 2sin x cos x

J'ai réussi à démontrer que le triangle était isocèle mais j'arrive pas a démontrer que (OM) et (AP) sont perpendiculaires...et puis le reste je vois vraiment pas...

*** message déplacé ***

Posté par tutur32 (invité)re : Duplication de Cosinus 20-05-07 à 16:10

VOila le dessin

** image supprimée **

*** message déplacé ***

Posté par
moctar
re : Duplication de Cosinus 20-05-07 à 16:13

Salut,
Que peut tu dire de la OP et OA ?

*** message déplacé ***

Posté par
madesse
re : Duplication de Cosinus 20-05-07 à 16:30

1)l'angle AOP=2AOM,tu dois prouver que OM est la médiatrice du triangle OAP.
si OM est la médiatrice de OAP alors les droites (OM) et (AP) sont perpendiculaires, et le point I est milieu de [AP].

2)Lorsque tu prolonges OI tu obtiens OM, c'est pourquoi cosOI=cosOM=cosx.

Tu reportes la longueur de PH sur l'axe des ordonnées et elle est égale à celle de l'ordonnée de P, c'est à dire de sin2x.

*** message déplacé ***

Posté par
fanfan07
re : Duplication de Cosinus 20-05-07 à 16:44

Dans un triangle isocèle :
la hauteur, la médiane, la médiatrice et la bissectrice issues du sommet principal sont confondues.

donc OM est la mediatrice du triangle OAP alors elle coupe AP perpendiculairement

Posté par
Tom_Pascal Webmaster
re : Duplication de Cosinus 20-05-07 à 16:45

Le multi-post n'est pas toléré sur ce forum !

Posté par tutur32 (invité)re : Duplication de Cosinus 20-05-07 à 17:21

Reponse a Madesse: comme tu l'as dit AOP=2AOM donc je peux dire que [AO) est la bissectrice et cela me suffirait pour demontrer que c'est également la hauteur donc pour cette partie je te remercie mais pour la suite on ne demande pas si cos OI= cos x on demande OI = cos x pour PH parcontre cela m'a aidé merci donc il ne me reste plus qu'a plancher sur la question 3...

Posté par
madesse
re : Duplication de Cosinus 20-05-07 à 17:34

je  suis très contente que ça t'ai aidé!
pour la question 3, pour calculer l'aire il y a:
(base.hauteur)/2  
   ou
A(OAP)=1/2.OP.PA.sin(angleAPO)
   ou =1/2.PA.OA.sin(angleOAP)
      =1/2.OP.OA.sin(anglePOA)  (comme ça t'arrange)

(mais cette formule je ne suis pas convaincue par son efficacité en + j'ai peut-être fais des erreurs en écrivant les côtés..la formule générale c'est:
A(ABC)=1/2.ab.sin(angleC))



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1733 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !