Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

equation du second degre

Posté par
did11
16-04-18 à 17:30

bonjour , quelqu'un pourrait m'aider a résoudre
xcarre + x - 4014=0
Sans utiliser le discriminant !
merci d'avance car je galère

Posté par
malou Webmaster
re : equation du second degre 16-04-18 à 17:31

c'est la 1re question de ton exercice ? qu'y a t-il avant ?

Posté par
did11
re : equation du second degre 16-04-18 à 17:38

Non , en fait c'est une histoire de pyramide... Je dois trouver combien d'oranges se trouveront sur la derniere ligne d'une pyramide ou il y a 1 orange à la premiere , deux oranges à la deuxieme , trois oranges à la troisieme...avec au total 2007 oranges
J'ai trouve en calculant ligne par ligne qu'il allait y en avoir 54 sur la 63 eme ligne. Bon...
Le probleme c'est que j'ai trouvé que l'on pouvait utiliser N=n(n+1)/2 pour le resoudre mais j'arrive a cette equation ( citée au dessus) et je dois la resoudre sans utiliser le delta

Posté par
malou Webmaster
re : equation du second degre 16-04-18 à 17:54

Citation :
il y a 1 orange à la premiere , deux oranges à la deuxieme , trois oranges à la troisieme...avec au total 2007 oranges
J'ai trouve en calculant ligne par ligne qu'il allait y en avoir 54 sur la 63 eme ligne.


je comprends pas tout là.....
(ton équation ne donne pas de solution entière, il y a quelque chose qui n'est ps OK)

Posté par
did11
re : equation du second degre 16-04-18 à 18:07

Alors je vais etre plus clair
On arrange , 2007 oranges en pyramide . Au sommet ( 1 ere ligne) : 1 orange , 2 eme ligne : deux oranges , 3 eme ligne : trois oranges ... ETC
Combien y a til d'oranges sur la derniere ligne?
En calculant ligne par ligne , je suis arrive a trouver qu'en fait , la pyramide allait comporter 62lignes completes et la 63 eme  ligne  seulement 54 oranges .
Mais j' essaye de prouver qu'on peut passer plus directement en faisant N ( nombre total d'oranges) = n( nombre de lignes ou d'oranges puisque c'est le meme)x ( n+1) /2 puisque ca marche partout.
je me retrouve donc avec une equation N =n x(n+1)/2
ou N = 2007   donc j'en arrive a          n carré+n - 4014 =0
Ca va mieux la?

Posté par
malou Webmaster
re : equation du second degre 16-04-18 à 18:11

donc les 54 oranges tu dois les enlever à 2007
et là tu dois résoudre
n(n+1)=2*1953

et tu peux le faire en cherchant les diviseurs de 3906

Posté par
did11
re : equation du second degre 16-04-18 à 18:24

Pardon mais non... je ne dois pas enlever les 54 oranges a 2007 !
En fait il y 2016 oranges sur la 63  eme et 1953 oranges sur la 62 eme.
Donc 2016 - 1953 = 54 oranges pour arriver a un total de 2007 oranges . C a j'en suis sur!
Ce que je veux savoir c'est comment resoudre cette equation sans delta apres je me debrouillerai

Posté par
malou Webmaster
re : equation du second degre 16-04-18 à 18:29

tu dis
On arrange , 2007 oranges en pyramide .

et
En fait il y 2016 oranges sur la 63 eme
incohérent !

donne un véritable énoncé, mot à mot si tu veux une aide efficace

ton équation x² + x - 4014=0 n'admet pas de solution entière...sache le....

Posté par
did11
re : equation du second degre 16-04-18 à 18:40

L'enonce je l'ai ecrit tel qu'il etait !
Je me doute que l'equation ne tombe pas pile car le resulat en passant par le delta me donne 62,8 ce qui me prouve qu'on est entre la 62 eme ligne et la 63 eme ligne ( apres j'ai soustrait pour arriver a 2007 oranges
Juste comment resoudre cette equation s'il vous plait...

Posté par
did11
re : equation du second degre 16-04-18 à 18:45

pardon pardon le calculetait 2007 - 1953 pour trouver les 54 oranges de la derniere ligne
Desole

Posté par
malou Webmaster
re : equation du second degre 16-04-18 à 19:43

donc si je comprends dans ce dédale...
tu cherches n tel que n(n+1)/2 2007

soit n(n+1) 4014

donc tu cherches 2 entiers consécutifs dont le produit est inférieur ou égal à 4014

c'est comme cela que tu résoudras ton inéquation pour contourner l'équation du second degré

Posté par
did11
re : equation du second degre 17-04-18 à 08:49

Bonjour et désole pour hier , j'ai du ''absenter.
Merci de votre aide , je vais essayer de faire comme vous me dites.
Merci encore

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1293 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !