Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

Factorisation

Posté par
Ndo31
17-08-16 à 16:56

Bonjour, je m'entraine à ma plus grande difficulté que j'ai eu en seconde c'est à dire la factorisation, je n'y arrive vraiment pas..

Pour (6x+3)-(x-4)(2x+1)

Peut être pour commencer (6x+3) = 3*(2x+1). Je ne sais pas si ça sert à grand chose.

Donc ensuite j'aurais fait : (2x+1)[(6x+3)-(x-4)]  car le facteur est (2x+1) car c'est 3*(2x+1)
et je trouve ( 2x+1)(5x-1)
Ce qui évidemment est complètement faux et l'histoire que 2x+1 est le facteur doit aussi être faux.. J'ai vraiment du mal avec la factorisation et la ça doit être tout simple mais je n'y arrive pas

Merci d'avance pour l'aide

Posté par
Lyrae
re : Factorisation 17-08-16 à 16:59

Essaie d'écrire sur papierton expression avec la décomposition que tu as trouvée pour (6x+3) cela t'aidera a y voir plus clair

Comme tu l'as remarque, (6x+3)=3*(2x+1)
On a donc(6x+3)-(x-4)(2x+1) = 3*(2x+1)-(x-4)(2x+1).
Vois-tu le facteur commun ? Je te laisse finir

Posté par
Ndo31
re : Factorisation 17-08-16 à 17:07

Oui je le vois mais je fais quoi après ? et j'en fais quoi du " 3* "

Posté par
Lyrae
re : Factorisation 17-08-16 à 17:13

Eh bien tu factorises par ce facteur commun, et ton expression devient (2x+1)(3-(x-4)=(2x+1)(-x+7).

Essaie maintenant de factoriser (7x+49)+(x+6)(x+7) pour vérifier si tu as compris

Posté par
Ndo31
re : Factorisation 17-08-16 à 17:21

D'accord, je crois avoir compris !

Pour ta factorisation :

   (7x+49)+(x+6)(x+7)
= 7(x+7)+(x+6)(x+7)
= (x+7)(7+(x+6)
= (x+7)(x+13)

Est ce juste ?
Et Merci de ton aide !

Posté par
Lyrae
re : Factorisation 17-08-16 à 17:23

Oui, c'est tout à fait juste. De rien !

Posté par
Ndo31
re : Factorisation 17-08-16 à 17:49

Je t'embête une dernière fois
Pour 4x2-16+(2x+3)(x-2)

J'ai fait 8*(x-2) = 4x2-16    
( Même si je sais que 4x2 fait 16x et 8*x = 8x c'était pour essayer)

du coup j'ai fait
(x-2)(8+(2x+3)
(x-2)(2x+11)

Le bon résultat est (x-2)(6x+11) pour le 11 c'est bon mais j'ai trouvé 2x et non pas 6x je sais que c'est à cause du début avec le 8 fois x mais je sais pas comment faire :/
Comment résoudre mon erreur ?

Posté par
Lyrae
re : Factorisation 17-08-16 à 17:59

Alors tout d'abord 4x^2 ne fait pas 8x, ni16x, ni quoi que ce soit en fait.

Essaie de factoriser 4x^2 - 16 en faisant ressortir(x-2)
comme facteur.

Petite astuce utile pour factoriser les polynômes du second degré : Soit P un polynôme tel que P(x)=ax^2+bx+c , a\ne 0. Alors il est possible queP(x)= (x-r_{1})(x-r_{2}) avec r_{1} et r_{2} les deux nombres tels que P(x)=0. ATTENTION r_{1} et r_{2} ne sont pas forcément des réels ! (Vu que tu es en seconde, pour toi ils "n'existent pas" dans ce cas). Cependant pour factoriser 4x^2+16 cette méthode marche et est facile à appliquer.

Posté par
Lyrae
re : Factorisation 17-08-16 à 18:04

Petite erreur, c'est P(x)=a(x-r_{1})(x-r_{2})

Posté par
Ndo31
re : Factorisation 17-08-16 à 18:22

J'ai beau relire, essayer, etc... Je n'ai pas comprit l'astuce et je n'ai toujours  comprit comment factoriser 4x2-16 .. Désolé

Posté par
Ndo31
re : Factorisation 17-08-16 à 18:27

Enfin je sais comment factoriser mais pas en faisant ressortir (x-2)
sinon j'aurais fait (2x-4)(2x+4)
ou sinon faire 2*(x-2)(x+2) ?

Posté par
Lyrae
re : Factorisation 17-08-16 à 18:28

C'est bien simple : Ici a (le coefficient dominant) vaut 4.
De plus 2 et -2 annulent 4x^2-16

En effet, 4*2^2-16=4*4-16=0 et 4*(-2)^2-16=4*4-16=0.
Ce qui donne r_{1}=2 et r_{2}=-2
On a donc d'après mon autre post, 4x^2-16=4(x-2)(x+2). Continue la factorisation à partir de là.

Posté par
Ndo31
re : Factorisation 17-08-16 à 18:43

ça fait :
4*(x-2)(x+2)+(2x+3)(x-2)

puis je suis encore bloqué

( j'avais prévenu que j'étais nul en factorisation)

Posté par
Lyrae
re : Factorisation 17-08-16 à 18:46

C'est la même chose que pour le premier exercice... Tu as un facteur commun : (x-2)

Posté par
malou Webmaster
re : Factorisation 17-08-16 à 18:59

Lyrae @ 17-08-2016 à 18:28

C'est bien simple : Ici a (le coefficient dominant) vaut 4.
De plus 2 et -2 annulent 4x^2-16

En effet, 4*2^2-16=4*4-16=0 et 4*(-2)^2-16=4*4-16=0.
Ce qui donne r_{1}=2 et r_{2}=-2
On a donc d'après mon autre post, 4x^2-16=4(x-2)(x+2). Continue la factorisation à partir de là.


pour un élève de seconde....

4x^2-16=4(x^2-4)
et là il doit savoir que x^2-4=(x-2)(x+2)

d'où

4*(x-2)(x+2)+(2x+3)(x-2) =
(x-2) [......+.....]

essaie...

Posté par
Ndo31
re : Factorisation 17-08-16 à 19:03

Bah, je fais (x-2)(4+(x+2)+(2x+3))
(x-2)(3x+9)

Posté par
malou Webmaster
re : Factorisation 17-08-16 à 19:05

non, parce que tu dois garder le signe entre 4 et (x+2) et ce n'est pas un + mais un *

soit (x-2)((4*(x+2)+(2x+3))

et là tu peux terminer

Posté par
Ndo31
re : Factorisation 17-08-16 à 19:09

Ah malou j'avais pas vu ton message.
Alors (x-2)(x+2)*4 + (2x+3)
(x-2)(4x+8)+(2x+3)
(x-2)(6x+11)

C'est ça ?

Posté par
Ndo31
re : Factorisation 17-08-16 à 19:11

Citation :
D'accord, je crois avoir compris !

Pour ta factorisation :

   (7x+49)+(x+6)(x+7)
= 7(x+7)+(x+6)(x+7)
= (x+7)(7+(x+6)
= (x+7)(x+13)


Pourtant là j'avais fait + et non pas * , Pourquoi ?

Posté par
Lyrae
re : Factorisation 17-08-16 à 19:18

Parce que le seul facteur d'(x+7)était 7

Ici le facteur d'(x-2) était4(x+2)

Posté par
Ndo31
re : Factorisation 17-08-16 à 19:23

D'accord Merci

Posté par
malou Webmaster
re : Factorisation 17-08-16 à 19:24

19h09 c'est OK !

Posté par
mkask
re : Factorisation 17-08-16 à 23:17

Bonsoir tout le monde,

Alors,..je me permet de poser une question sur ton sujet Ndo31,

Voila: dans ton expression 4x²-16+(2x+3)(x-2), étant donné que 4x²-16=4x(x-2)+8x-16,
Donc 4x²-16+(2x+3)(x-2)=4x(x-2)+8x-16+(2x+3)(x-2), mais la comment continué avec ce 4x ?

Je dirai en toute logique: (x-2)(4x+8x-16+2x+3)=(x-2)(14x-13)...

vous me direz "pourquoi compliqué alors qu'on peut faire plus simple". Je vous rassure j'ai parfaitement compris votre raisonnement qui est beaucoup plus simple bien sûr, mais j'ai envi de comprendre mon erreur, ca pourra m'aider a l'avenir

Voila merci d'avance et bonne soirée !

Posté par
malou Webmaster
re : Factorisation 18-08-16 à 09:00

eh...ton 8x-16 dans ceci "4x(x-2)+8x-16+(2x+3)(x-2)"

n'est pas du tout en facteur avec (x-2)
donc tu ne peux pas factoriser par (x-2) comme tu as fait

il aurait fallu que tu transformes au préalable 8x-16 en 8(x-2)
OK ?....

Posté par
mkask
re : Factorisation 18-08-16 à 10:28

Ah mais oui
Vous avez reponse a tout

Posté par
malou Webmaster
re : Factorisation 18-08-16 à 11:06

Citation :
Vous avez reponse a tout


Bonne journée !!



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1732 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !