Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Repère dans l'espace

Posté par
Calvin1999
04-10-16 à 21:43

Bonjour
Voici un exercice de mathématique pour jeudi. Je n'arrive pas à comprendre ce qu'on le demande.

Soit u(1;2;-1) v(-1;-4;2) et w(0;0;1) trois vecteurs et A(0;-2;1) , B(3;-2;0) et C(-3;2;0) trois points de l'espace.

1. Montrer que (A;u;v;w) est un repère de l'espace.

2. Déterminer les coordonnées du point B dans ce repère.

3. Déterminer les coordonnées du point C dans ce même repère.

4. Les points A, B, C, sont-ils alignés.
Pour cette question je connais la méthode, mais j'ai besoin des coordonnées.

Posté par
cocolaricotte
re : Repère dans l'espace 04-10-16 à 21:55

Bonjour,

Quelles sont les conditions pour qu'un point et 3 vecteurs forment un repère ?

Posté par
Calvin1999
re : Repère dans l'espace 05-10-16 à 15:50

Ah ! Il faut que les vecteurs u et v soient orthogonaux et qu'au moins 1 de ces vecteurs soit colinéaire au vecteur w !

Posté par
cocolaricotte
re : Repère dans l'espace 05-10-16 à 20:22

Eh bien tu vas ouvrir ton livre et y réviser la définition d'un repère dans l'espace !

Posté par
Calvin1999
re : Repère dans l'espace 05-10-16 à 21:31

Bon, si on rectifie. Le repere doit être défini par le point A et deux vecteurs non colinéaires.
Donc il s'agit juste de montrer que les vecteurs u et v ne sont pas colinéaires ?

Posté par
cocolaricotte
re : Repère dans l'espace 05-10-16 à 21:36

Où as-tu trouvé cette définition fantaisiste ?



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1741 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !