logo

Matrice - Méthode de Gauss


autreMatrice - Méthode de Gauss

#msg140399#msg140399 Posté le 22-02-05 à 03:24
Posté par Antoine- (invité)

C'est moi qui est poche ou bien...

12x + 16y + 14z = 530
1.5x + 2y + 1.8z = 66.8
0.8x + 0.6y + 1.2z = 31.8

Matrice auguementé:

12  16  14   : 530
1.5 2    1.8  : 68.8
0.8 0.6 1.2  : 31.8


Le but étant d'avoir une diagonal de 1 et des zéro dessous.


L2 = Ligne2 et ainsi de suite
Donc:


12L2 - 0.5L1  

Calcul:

(12*1.5) - (1.5*12) = 0
(12*2)    - (1.5*16) = 0
(12*1.8 ) - (1.5*14) = 0.6
(12*66.9 - (1.5*530) = 7.8

12L3 - 0.8L1

Calculs:

(12*0.8 ) - (0.8*12) =0
(12*0.6)- (0.8*16) =  -5.6
(12*1.2)- (0.8*14) = 3.2
(12*31.8 )- (0.8*530) = -42.4

Ce qui nous donne la matrice suivante:

20 16   14    :  530
0   0     0.6   : 7.8
0  -5.6  3.2   : -42.4


Maintenant, on cherche un 0 dans la 3e ligne en bas.

Donc

16L3 - -5.6L2

Calcul:

(16*-5.6) - (-5.6*16)  =0
(16*3.2) - (-5.6*14)   = 129.6
(16*-42.4)-(-5.6*7.8 ) = -634,72

Matrice :

12 16 14    :  530
0   0   0.6   : 7.2
0   0  129.6 :-634,72

Z = -634.72/129.6 = -4.897530864


Quand mes réponses devrait être X= 9, Y=15, Z=13


C'est quoi je fais de croche? Je suis pourtant les étapes une à une et ça arrive jamais, ça fait 6 fois que je recommence. Dans certains numéros, ça marche très bien, mais dans d'autres, ça marche pas pantoute.


Aidez moi, je vais viré fou et mon examen qui s'en vient mercredi en plus
re : Matrice - Méthode de Gauss#msg140415#msg140415 Posté le 22-02-05 à 08:40
Posté par Yaya13 (invité)

coucou
c'est normal que tu ne parviennes pas au résultat tu fais des erreurs par rapport à l'énoncé

la matrice c'est    
12   16   14   : 530
1,5  2    1,8  : 66,9
0,8  0,6  1,2  : 31,8

tu fais 8 L2 - L1

12   16   14   : 530
0    0  0,04  : 5,2
0,8  0,6  1,2  : 31,8

ensuite tu fais 15L3 - L1

12   16   14   : 530
0    0  0,04  : 5,2
0   -7    4   : -53

ensuite tu interverti L2 et L3 et c'est bon
et on trouve bien
X=9
Y=15
Z=13





re : Matrice - Méthode de Gauss#msg140416#msg140416 Posté le 22-02-05 à 08:42
Posté par Yaya13 (invité)

excuse j'ai mal tapé à la deuxième ligne c'est 0,4 et non pas 0,04
petite erreur d'inattention désolé
Re`:#msg140614#msg140614 Posté le 22-02-05 à 14:35
Posté par Antoine- (invité)

Tu veux dire quoi par interverti, C'est pas très famillier comme lanage mathématique au Québec.


Et quand tu parles d'erreur par rapport à l'énnoncer, tu veux dire quoi par là? Que je prend trop des grosses opérations pour arriver à mes 0?

Et aurait=tu quelques trucs pour pas tomber dans ce piège à tout coup?

Ça semble tellement simple quand on se le fait expliquer mais une fois que tu viens pour le faire, je sais pas pourquoi mais ça devient ultra compliquer pour moi.

Merci en passant
re : Matrice - Méthode de Gauss#msg140647#msg140647 Posté le 22-02-05 à 14:55
Posté par Yaya13 (invité)

en fait quand je dis intervertir je veux dire tu mets L2 a la place de L3 et L3 a la place de L2
re : Matrice - Méthode de Gauss#msg140657#msg140657 Posté le 22-02-05 à 14:59
Posté par Yaya13 (invité)

t'avais mal recopié ton énoncé donc je ne parvenais pas à trouver les bons résultats donc un conseil fais attention en tapant
mais c'est vrai que tu te compliques les calculs
quand tu multiplies les lignes choisit plutot des entiers c'est plus simple
re:#msg140800#msg140800 Posté le 22-02-05 à 16:16
Posté par Antoine- (invité)

Je viens de m'en rendre compte que j'avais fais une erreure en recopiant mes données. Maintenant que j'utilise des entiers  et de petits entiers, mes problèmes arrivent beaucoup plus facilement.


Secondo:

On nous a montré une méthode alternative à celle de Gauss, ce qu'on appelle la Matrice Inversé

(C)Coeficient*(V)Variable = (K)constante

On cherche V
Donc

V=C-1K

Disont qu'on reprend les trois même équations que j'ai donnée au début

12x + 16y + 14z = 530
1.5x + 2y + 1.8z = 66.9
0.8x + 0.6y + 1.2z = 31.8


C'est en cinq étapes mais disont que le début des mes notes est pas claire et que je m'en souviens plus non plus.

Alors tu pouvais encore m'aider. Ça serait très apprécié.











re : Matrice - Méthode de Gauss#msg140808#msg140808 Posté le 22-02-05 à 16:23
Posté par Yaya13 (invité)

Tu veux surement parler de la présentation de Gauss Jordan qui permet d'étudier si une matrice est inversible et de calculer A-1
c'est bien ca?je vais t'expliquer
re : Matrice - Méthode de Gauss#msg140816#msg140816 Posté le 22-02-05 à 16:32
Posté par Yaya13 (invité)

on va prendre exemple sur la matrice que tu as je vais te montrer
soit une matrice A

12   16   14  
1,5  2    1,8  
0,8  0,6  1,2  

calculons A-1 (si cela existe) grâce à la présentation de Gauss Jordan

la présentation de Gauss Jordan est celle ci

12   16   14   :  1  0  0
1,5  2    1,8  :  0  1  0
0,8  0,6  1,2  :  0  0  1

ensuite tu fais en sorte comme précédemment d'obtenir des 1 sur la diagonale et des 0 en dessous
A est inversible ssi on n'a aucun 0 sur la diagonale
ensuite il te faut mttre des 0 au dessus de la diagonale
ca te donnera
1  0  0  :
0  1  0  :    A-1
0  0  1  :

re : Matrice - Méthode de Gauss#msg140825#msg140825 Posté le 22-02-05 à 16:35
Posté par Antoine- (invité)

Je crois que c'est ça mais je ne suis pas sure.

Je sais que ça prend le déterminant, et une sérieu d'opération avec


Matrice des mineurs
Matrice adjointe
matrice de départ

Matrice inversé = matrice adjointe

ça fini qu'on a:

(V) * (Matrice Inversé) * (K) = Déterminant

Entk ça m'apprendra à prendre mes notes trop vites..

et ou on peut se vérifier à la fin avec la matrice echelon pour voir si on ne sait pas tromper.

Tk j'espère que tu comprend mon charabia.
re : Matrice - Méthode de Gauss#msg140884#msg140884 Posté le 22-02-05 à 17:03
Posté par Antoine- (invité)

Ca aucun rapport avec Gauss, c'est une autre méthode totalement différente pour trouver les variables plus vite qu'avec la Méthode de Gauss si on n'a plus que 3 équations, ça devient très long avec la méthode de Gauss. c'est pour ça qu'on nous l'a montré sauf que je la comprend pas.
re : Matrice - Méthode de Gauss#msg140885#msg140885 Posté le 22-02-05 à 17:04
Posté par Antoine- (invité)

Et c'est pas la méthode de Cramer, que j'ai dans mes notes et que je pense comprendre vue que j'ai bien noté cette fois là.
re : Matrice - Méthode de Gauss#msg140897#msg140897 Posté le 22-02-05 à 17:19
Posté par Yaya13 (invité)

Je vois pas quelle méthode c'est alors désolé

Répondre à ce sujet

réservé Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster
attention Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.

  • Ce topic

    imprimer Imprimer
    réduire la tailleRéduire   /   agrandir la tailleAgrandir

    Pour plus d'options, connection connectez vous !
  • Fiches de maths

    * algèbre en post-bac
    25 fiches de mathématiques sur "algèbre" en post-bac disponibles.


maths - prof de maths - cours particuliers haut de pagehaut Retrouvez cette page sur ilemaths l'île des mathématiques
© Tom_Pascal & Océane 2014