Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Ensemble de points M privé de tel point

Posté par
Elouan
25-09-11 à 15:13

Bonjour,

J'ai remarqué qu'à chaque fois que je termine un exercice, ma démarche est incomplète car j'oublie tout le temps de dire que l'ensemble de points M d'affixe z est privé -privée si c'est une droite- de tel ou tel point (généralement le point A dans mes exercices).

Je ne comprends pas pourquoi l'ensemble est souvent (pas toujours il me semble) privé d'un point A. Pouvez-vous m'expliquer cela ?

Surtout qu'on ne connait rien sur le point A, à la base.

Merci pour l'aide que vous saurez m'apporter, j'ai vraiment l'envie de comprendre étant donné que j'ai bientôt un devoir là-dessus -dans deux jours-.

Elouan

Posté par
toad
re : Ensemble de points M privé de tel point 25-09-11 à 15:32

Bonjour,

souvent il s'agit d'une division par 0 interdite

aurais-tu un exemple ?

Posté par
Elouan
re : Ensemble de points M privé de tel point 25-09-11 à 15:50

Ah d'accord, mais comment la deviner, et bien y penser à chaque fois ? Ne pas l'oublier... ?

Un exemple, bien sûr.
Voici mon énoncé :
Le plan complexe P est rapporté à un repère orthonormal direct (0, , ).
On désigne par A et B les points d'affixes respectives -i et 2i.
On désigne par P* l'ensemble des points de P, distincts de A.

Soit f l'application de P* dans P qui, à tout point M d'affixe z, associe le point f(M) d'affixe Z telle que :
Z = i(\frac{z-2i}{z+i}).

1°a) ... (pas de notion d'ensemble privé du point A)
b) ... (pas de notion d'ensemble privé du point A)
2°a) Déterminer et construire l'ensemble E des points M de P* dont les images ont pour affixe un nombre imaginaire pur.
b) Déterminer et construire l'ensemble F des points M de P* dont les images ont pour affixe un nombre réel.
...

La correction :
2°a) Le point M d'affixe z appartient à E
si et seulement si z -i et \frac{3x}{x²+(y+1)²}=0
z -i et x = 0.
E est la droite (0, ) privée du point A.
b) M F
si et seulement si z -i et \frac{x²+y²-y-2}{x²+(y+1)²} = 0
...
On reconnait l'équation du cercle C de centre d'affixe 1/2i, et de rayon 3/2.
Notons que A C.
F est le cercle C de centre d'affixe 1/2i et de rayon 3/2, privé du point A.

Voilà deux exemples qui sont dans l'exercice que je viens de terminer.
Je ne comprends pas l'importance du point A et pourquoi les ensembles sont privés de lui.

Merci pour votre intérêt à ma question

Posté par
toad
re : Ensemble de points M privé de tel point 25-09-11 à 16:00

eh bien on cherche des points qui appartiennent à P*

or P* est privé du point A ! tu as ta réponse

on remarque que si on calcule f(A) on effectue une division par 0, c'est pour cela qu'on retire le point A de l'ensemble de départ de la fonction !

Posté par
Elouan
re : Ensemble de points M privé de tel point 25-09-11 à 16:10

Ah oui c'est grace à la mention "distincts de A" dans l'énoncé alors ?!
La plupart du temps l'indice est donc dans l'énoncé ?

Je comprends mieux maintenant. J'espère ne pas me faire piégé lors d'un autre exercice.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1741 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !