Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

exo sur les complexes

Posté par aleyna (invité) 03-01-04 à 18:48

bonjour j'ai un problème de maths qui me pose qq soucis...

Soit Z=z-1+2i/z-i
on pose z=x+iy  et Z=X+iY
a)calculer X et Y en fonction de x et y

j'ai trouvé:      X=(x^2+y^2+y-x-2)/(x^2+y^2-2y+1)   et  
                        Y=(3x+y-1)/(x^2+y^2-2y+1)  
b) Déterminer l'ensemble   des points M d'affixe
z tels que Z soit réel

j'ai écris Z réel équivaut à dire que Im(z)=0 et je trouve y=0
et x=1/3  

c)Déterminer l'ensemble   ' des points M d'affixe
z tels que Z soit imaginaire pur

j'ai trouvé x=0 et y=1

pour les questions a) b) et c) j'ai besoin que vous les vérifiez
car je ne suis pas sure d'avoir juste!

d) On note A le point d'affixe 1-2i, B le point d'affixe i
et M le point d'affixe z.Expliciter un argument de Z et retrouver
les résultats des questions b) et c)...ici je ne sais pas quoi faire
!

pouvez-vous m'aider merci d'avance!

Posté par
Océane Webmaster
re : exo sur les complexes 03-01-04 à 19:15

Bonjour

- Question a -
Je trouve les mêmes résultats sauf que je préfère cette écriture

X=(x²+y²+y-x-2)/[x²+(y-1)²]
et
Y=(3x+y-1)/[x²+(y-1)²]


- Question b -
Z est réel si et seulement si
Y = 0
c'est-à-dire
3x + y - 1 = 0
et
x0
y1

Donc, l'ensemble cherché est la droite d'équation y = -3x + 1
privé du point de coordonnées (0; 1)


- Question c -
Z est imaginaire pur si et seulement si
X = 0
c'est-à-dire
x²+y²-x+y-2 = 0
et
x0
y1


Or, x²+y²-x+y-2 = 0
équivaut à
(x - 1/2)² + (y + 1/2)² = 5/2

L'ensemble cherché est donc le cercle de centre (1/2; -1/2) et de rayon 5
/2 privé du point de coordonnées (0; 1).



- Question d -
arg Z = (BM; AM) (2)
(en vecteurs)

Donc :
Z est un imaginaire pur si et seulement si
(BM; AM) = /2 ()
avec zi

Les vecteurs BM et AM sont donc orthogonaux, ce qui se traduit par :
x(x-1) + (y-1)(y+2) = 0
x² - x + y² + y - 2 = 0

On retrouve donc notre ensemble de la question c).



Z est un réel si et seulement si
(BM; AM) = 0 ()
avec zi
Les vecteurs BM et AM sont donc colinéaires, ce qui se traduit par :
x(y+2) - (y-1)(x-1) = 0
soit (après calculs)
y = -3x + 1

On retrouve donc notre ensemble de la question b).



Voilà, bon courage ...

Posté par aleyna (invité)re : exo sur les complexes 04-01-04 à 10:59

je te remercie beaucoup!!!!!!!!!!!!!

Posté par aleyna (invité)re : exo sur les complexes 04-01-04 à 11:05

mais j'aimerai aussi savoir comment tu as trouvé les solutions
pour b) et c)  ....tu peux m'expliquée la méthode stp!!!!merci

Posté par
Océane Webmaster
re : exo sur les complexes 04-01-04 à 13:23

Je ne sais pas quoi t'expliquer

Pour la question b) :
Z est réel si et seulement si
Y = 0

Y s'écrit sous la forme d'une fraction, donc le numérateur
est nul mais le dénominateur ne doit pas s'annuler, donc :

3x + y - 1 = 0
et
x0
y1

Ensuite tu reconnais l'équation d'une droite et le point de coordonnées
(0; 1) appartient à cette droite et il annule le dénominateur. Il
faut donc le retirer.

Pour la question c), c'est le même raisonnement, sauf que l'on
reconnaît l'équation d'un cercle.

J'espère t'avoir éclairé un peu

Posté par aleyna (invité)re : exo sur les complexes 04-01-04 à 13:46

ah j'ai compris maintenant...oh la la le temps que ça remonte
au cerveau tu sais bref merci pour tes conseils!!!!!!!!!



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1694 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !