Inscription / Connexion Nouveau Sujet
Niveau Licence Maths 1e ann
Partager :

Matrice échelonnée réduite

Posté par
Sooofye
23-12-16 à 13:25

Bonjour,
j'ai du mal sur un exercice. Je dois déterminer la matrice échelonnée réduite équivalente à A = \begin{pmatrix} 1 & 2 & 0 & 1 & 0\\ 4 & 6 & 4 & 3 & 2\\ 2& 2 & 2 & 1 & 1\\ 3 & 2 & 4 & 2 & 3 \end{pmatrix}

Est-il possible que je trouve \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & -1/2\\ 0 & 0 & 1 & 0 & 1/2\\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}

C'est la dernière colonne qui me pose problème. Est-ce que je peux trouver des éléments non nuls puisqu'il n'y a pas de pivot sur cette colonne là?
Merci beaucoup

Posté par
Sooofye
re : Matrice échelonnée réduite 24-12-16 à 07:26

S'il vous plaît, pas même un petit avis ?

Posté par
scoatarin
re : Matrice échelonnée réduite 24-12-16 à 11:50

Bonjour,

Si tu veux bien faire l'effort d'écrire tes calculs, je veux bien faire l'effort de les vérifier

Posté par
Sooofye
re : Matrice échelonnée réduite 24-12-16 à 12:05

En fait, je me demandais juste s'il était possible d'avoir autre chose que des éléments nuls dans les colonnes sans pivots. Puisqu'il y a 4 lignes et 5 colonnes, il y a forcément une colonne sans pivot et je ne savais pas si je devais forcément y trouver des 0. J'ai trouvé ma réponse ailleurs depuis et c'est bien possible.
Merci beaucoup

Posté par
scoatarin
re : Matrice échelonnée réduite 24-12-16 à 12:15

De rien  



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1725 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !