Inscription / Connexion Nouveau Sujet
Niveau maths sup
Partager :

PCSI maths (espaces vectoriels)

Posté par Yaya13 (invité) 15-01-05 à 20:33

Bonsoir j'ai un petit soucis avec cet exercice pourriez vous m'aider? Merci.

soit a1 a2 … an n éléments deux à deux distincts de K (n Є N*)
pour tt i Є {1; … ; n}    
on note Li(X)=Π kЄ(1…n) k≠ i ((X-ak)/(ai-ak))

a) montrer que B = (L1, …, Ln) est une base de Kn-1[X]

b) soit (b ,…, b) Є Kn
montrer qu'il existe un unique Q Є Kn-1[X] tel que pour tt k Є {1; … ; n} Q(ak) = bk

c) on considère le système carré (n;n) : (pour tt i Є {1; … ; n}  Σ(j=0 à n-1) aji xj = bi)   ( Σ )
montrer que Σ admet une solution unique.

d) montrer que le système (pour tt i Є {0; … ; n-1}  Σ(j=1 à n) aji xj = 0) admet une unique solution.

e) montrer qu'un polynôme de degré inférieur ou égal à n Є N* et qui admet (au moins) n+1 racines deux à deux distinctes est nécessairement nul.

Posté par minotaure (invité)re : PCSI maths (espaces vectoriels) 16-01-05 à 04:48

salut
a)dim K(n-1)[X]=n
or card B =n il y a juste a montrer la liberte de B.

b) existence Q=b1*L1+b2*L2+...+bn*Ln
unicite : soit R un autre polynome verifiant ceci.
pour tout k, R(ak)=Q(ak)
R est dans K(n-1)[X] donc il existe c1,...cn tel que
R=c1*L1+...cn*Ln
R-Q=(c1-b1)*L1+...+(cn-bn)*Ln

remarque sur les Li
pour tout (i,j) dans [[1,n]]^2
Li(aj)=0 si i different de j et Li(ai)=1

soit k dans [[1,n]]
0=R(ak)-Q(ak)=(c1-b1)*L1(ak)+...+(cn-bn)*Ln(ak)
d'apres la remarque sur Li :
0=(ck-bk)*Lk(ak)=ck-bk
donc ck=bk

donc pour tout k dans [[1,n]], ck = bk
donc Q=R.

Posté par minotaure (invité)re : PCSI maths (espaces vectoriels) 16-01-05 à 04:55

il faudrait verifier la c) je crois qu'il y a un probleme d'indices : on a a(0) alors que a(0) n'existe pas.

Posté par Yaya13 (invité)re : PCSI maths (espaces vectoriels) 16-01-05 à 07:45

merci bcp minotaure pour ton aide pour les deux premières questions.
Par contre pour la troisième question tu as raison j'ai fais une erreur, excuse moi.
C'est
c) on considère le système carré (n;n) : (pour tt i Є {1; … ; n}  Σ(j=0 à n-1) aji xj = bi)   ( Σ )

tu penses pouvoir m'aider?
bonne journée à tous profitez bien d'aujourd'hui demain faut repartir au boulot!

                

Posté par minotaure (invité)re : PCSI maths (espaces vectoriels) 16-01-05 à 08:42

c'est bien ce que je pensais.
si on considere Q(X)=x0+x1*X+x2*X^2+...+x(n-1)*X^(n-1)
alors il y a equivalence entre la proposition en b) et la proposition en c).
en b) on cherche Q. en c)on cherche les coefficients de Q.

d) si on prend b1=b2=...bn=0 alors le resultat decoule de la question c.

e) montrer qu'un polynôme de degré inférieur ou égal à n Є N* et qui admet (au moins) n+1 racines deux à deux distinctes est nécessairement nul.

soit P un polynome de degre inferieur ou egal a n dans N*.soit a une racine.
P=(X-a)*Q
Q est dans K(n-1)[X] et Q a (au moins) n racines deux à deux distinctes.(appelons les a1,...an)
soit Q(X)=x0+x1*X+...+x(n-1)*X^(n-1)
Q(a1)=0 donc x0+x1*a1.+++x(n-1)*a1^(n-1)
Q(a2)=0 donc ....
....
Q(an)=0 donc ....

on aboutit au systeme enonce en d).
or ce systeme admet une UNIQUE solution.
de plus (x0,x1,...xn)=(0,0,0...0) est solution de ce systeme. ce qui aboutit au fait que Q a obligatoirement tous ses coefficients nuls.
donc Q=0 donc P=0.
a+

Posté par Yaya13 (invité)re : PCSI maths (espaces vectoriels) 16-01-05 à 09:18

Merci bcp pour ton aide minotaure, ton aide va me permettre d'y voir plus clair.
Bonne journée
a+



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1510 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !