Bonjour, j'ai un problème avec la primitive de 1/x*(ln(x)^n.
J'ai essayé :
I5 = (ln(x))^-n/x
J'ai donc commencé à faire une IPP, en posant u'(x)=1/x --> u(x)= ln(x) et v(x)=(ln(x))^-n --> v'(x)=(-(n/x)*(ln(x))^(-n-1))
Je trouve donc
I5= ln(x)^-n+1 - primitive( (-n/x)*(ln(x))^-n-1 * ln(x)))
= ln(x)^-n+1 - primitive ( (-n/x) * ln(x)^-n)
La primitive ci-dessus est de la forme -n*u'*u^-n, mais cela ne mène à rien car u^-n+1 donne en dérivant (-n+1)*u'*u^-n . J'ai développé pour voir quel membre il fallait que j'enlève, il faut donc retirer le 1*u'*u^n mais on ne peut pas car si je fais u^-n+1 - u'*u^n la dérivée ne marche pas car on a un produit.
J'ai donc essayée de faire une deuxième IPP et je trouve :
I5= ln(x)^-n+1 + n*ln(x)^(-n+1) / x - primitive( ln(x)^(-n) * n^2/x
Et c'est pareil je ne trouve pas de forme adéquate pour primitiver cela, refaire une IPP me semble pas la bonne solution. Je ne trouve donc pas comment trouver la primitive de cette fonction malgré plusieurs essais...
Merci pour votre future réponse,
Bonne journée.
Ahoui mais du coup j'ai u'*u^-n, ça voudrait dire que ma primitive est u^-n+1 pour avoir du u^-n en dérivant. Sauf que là j'ai un facteur (-n+1) devant u'*u^-n+1 en dérivant donc je ne trouve pas mon u'*u^-n+1 mais (-n+1)*u'*u^-n et je ne vois pas comment enlever le facteur -n..
c'était 1/ (x*(ln(x)^n) alors ta fonction ? attention aux parenthèses
oui c'est donc de la forme u' u-n et donc une primitive u-n+1/(-n+1) soit si on veut l'écrire plus normalement :
- 1/ ((n-1) (ln x)n-1) + C
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :