Bonjour à tous,
J'ai récemment réouvert mon cahier de colles de prépa, et je suis tombé sur un exercice qui me prend bien la tête depuis un moment. D'apparence simple, j'essaie d'en faire le tour mais n'ai pas trouvé le 'truc' pour me débloquer. Si quelqu'un a une piste, je suis preneur
Voici l'énoncé, et mes réflexions :
soit,
avec
Déterminer le sens de variation de la suite, ainsi que sa limite éventuelle.
On peut en préambule montrer que très simplement avec une récurrence double.
Ensuite, pour calculer le sens de variation, j'ai commencé par chercher la valeur, pour tout n de , de
, mais je n'arrive pas à aboutir à quoi que ce soit. On comprend que la suite est croissante, j'ai donc essayé avec une récurrence également, mais je n'aboutis pas.
De même en posant la fraction , je n'aboutis à rien de concluant.
Si quelqu'un a une idée de piste à emprunter, je ne dis pas non pour un petit indice
Merci d'avance, et bonne journée à tous,
Romain
salut
car et le deuxième facteur est positif
il suffit alors de rédiger la bonne hypothèse de récurrence pour conclure que la suite est croissante
Aaah la factorisation de , bien sûr ! Merci beaucoup pour le conseil, ensuite c'est une gentille récurrence double encore.
Je ne vois pas trop de quoi tu veux parler quand tu parles d'autres hypothèses de récurrence cependant ^^'
J'ai posé
Merci beaucoup pour l'aide !
on peut poser comme hypothèse de récurrence :
1/
2/ et on conclut avec l'initialisation qui nous donne le signe : la positivité
1/ et 2/ se déduisent immédiatement de ma première ligne
1/ s'utilise quand on sait que la différence est positive
2/ s'utilise quand on ne connait pas le signe de la différence
3/ en fait ne marche pas !!
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :