Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Variable Aleatoire '02

Posté par
Molotov79
08-06-19 à 11:42

Bonjour , je demande de l'aide pour mon exercice de proba et je serai ravi d'en recevoir .
Le voici:
Exercice:
On dispose de deux dés tétraédriques notés A et B. Les quatre faces de chacun d'eux sont numérotées de 1 à 4. Lorsqu'on jette un dé, on note le numéro de la face cachée du dé (on suppose que le dé ne peut tomber que sur une face). Pour le dé A, les quatre numéros ont tous la même probabilité d'être cachée. Pour le dé B, la probabilité de noter le numéro i est proportionnelle à i.
1. Calculer les probabilités P1,P2,P3,P4 pour les quarte faces du dé B
2. On lance les deux dés. On note i le numéro caché du dé A et j le numéro caché du dé B. on suppose les lancers indépendants ; on note P(i,j) la probabilité de noter i pour le dé A et j pour le dé B.
a) Montrer que P(1;1) =P(2;1) =P(3;1)=P(4;1)=\frac{1}{40}

b) Déterminer les probabilités P(i,j) pour tous les nombres entiers i et j compris entre 1 et 4.
On appelle Z la variable aléatoire définie par : Z(i,j) est le plus grand des nombres i et j.
Exemple : Z(1,2)=2, Z(2,1)=2, Z(1,1)=1.
a) Quelle sont les valeurs prises par Z ?
b) Déterminer la loi de probabilité de Z et son espérance mathématique E(Z)

Ce que j'ai fait
1.Soit p la probabilite de sortie du numero 1 du de B , j'ai
p+2p+3p+4p+5p+6p=1 alors P1=1/10 , P2=2/10 , P3=3/10 , P4=4/10
Question 2.a:
P(1;1)=\frac{1}{4}.\frac{1}{10}=\frac{1}{40}
P(2;1)=\frac{1}{4}.\frac{2}{10}=\frac{1}{20} ce qui est bien different de ce que je dois normalement avoir ??

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 11:55

Posté par
Leile
re : Variable Aleatoire '02 08-06-19 à 13:04

bonjour,

P(2 ; 1)  ==>   le dé A  donne 2  et le dé B donne 1 (et non l'inverse)

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 13:13

Bonjour,
alors j'ai P(2;1)=(1/4)(1/10) et de meme pour les autres car A c'est l equiprobabilite et le numero du de B est fixe donc on a P(1;1)=P(2;1)=P(3;1)=P(4;1)=1/40

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 13:59

b. on a P(i;n)=n/40 pour n compris entre 1 et 4

Posté par
Leile
re : Variable Aleatoire '02 08-06-19 à 14:36

tu continues ?

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 14:47

Je suis à la derniere question où je sais pas calculer car pour que 2 soit le sup 2 peut sortir de A ou de B avec 1 comme l autre numero

Posté par
Leile
re : Variable Aleatoire '02 08-06-19 à 15:23

je ne comprends pas ta question..
as tu listé les 16 couples possibles ? en notant leur proba ?  

les valeurs pour Z  sont  1 , 2, 3 , 4

qu'as tu répondu à p(Z=1) ?

pour p(Z=2),   il y a 3 couples possibles (1 ; 2) (p=1/40),
(2 ; 1)  et (2;2)  avec chacun une p=2/40
donc p(Z=2) = ??

Posté par
flight
re : Variable Aleatoire '02 08-06-19 à 17:07

salut

pour t'aider à demarrer

P(Z=2)=P(1,2)+P(2,1)+P(2,2)= (1/4)*(2/10)+ (1/4)*(1/10)+ (1/4)*(2/10)=5/40

P(Z=3)= ..à toi

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 22:34

Bonsoir a vous 2
P(Z=2)=5/40
P(Z=1)=1/40 evident
P(Z=3)=P(1;3)+P(3;1)+P(3;3)+P(3;2)+P(2;3)=1/40 + 3/40 + 3/40 +3/40 + 3/40 =13/40
P(Z=4)=1-Somme des autres proba=21/40

E(X)=2(5/40)+(1/40)+3(13/40)+4(21/40)=3,85

Posté par
Molotov79
re : Variable Aleatoire '02 08-06-19 à 22:40

Molotov79 @ 08-06-2019 à 22:34

Bonsoir a vous 2
P(Z=2)=5/40
P(Z=1)=1/40 evident
P(Z=3)=P(1;3)+P(3;1)+P(3;3)+P(3;2)+P(2;3)=1/40 + 3/40 + 3/40 +2/40 + 3/40 =12/40
P(Z=4)=1-Somme des autres proba=22/40

E(X)=2(5/40)+(1/40)+3(12/40)+4(22/40)=3,375

Posté par
Leile
re : Variable Aleatoire '02 09-06-19 à 00:42

oui, après correction, c'est bien.

Posté par
Molotov79
re : Variable Aleatoire '02 09-06-19 à 10:54

Super grace a vos aides j'ai compris , merci c'est tres gentil , j'espere vous revoir prochainement



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1741 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !