Inscription / Connexion Nouveau Sujet
Niveau Licence Maths 1e ann
Partager :

comprendre la relation entre l'ensemble vide et un ensemble

Posté par
bleuciel
15-02-15 à 12:19

Bonjour,
je voudrais comprendre pourquoi on a :
E E
et E, P(E)

c'est une convention mais pourquoi est-ce qu'on l'a choisit comme convention ou bien comment interpréter cette convention. Si je comprends bien c'est un axiome un peu comme deux droites non parallèles dans le plan euclidien sont sécantes en un point.
là je comprends et visionne bien mais pour l'ensemble vide , j'ai un peu de mal à visionner...

Posté par Profil amethystere : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 12:35

salut Bleuciel

en fait tout est dit ici

mais reprenons au début du debut enfin selon Zermelo

Zermelo ne part pas d'une définition du concept d'ensemble mais part d'un moyen de construction qui permet de donner des propriétés qui caractérisent ce concept

On parle d'un objet appelé "ensemble" dont on sait qu'il peut posséder des éléments (ici le concept d'appartenance : des éléments qui appartiennent à un ensemble) et ces éléments sont eux mêmes des ensembles

cela il le décrète!

au passage sans même définir le vocabulaire qu'il emploie :
ensemble : on sait pas ce que c'est
concept d'appartenance : on sait pas ce que c'est
la seule chose qu'on sait : puisque c'est lui qui le décrète :
un élément d'un ensemble est lui-même un ensemble



Soit un ensemble noté A si on dit que:
a "appartiens à" A et on note a "in" A de l'anglais

autre symbole (voir liste en fin de post) on notera
x "notin" E pour dire que l'élément x n'appartiens pas à E

Pour tout ensemble A , la quantité de ses éléments est noté Card (A)

Lorsqu'un ensemble A ne possède qu'un seul et unique élément on dit que l'ensemble a est un singleton et dans ce cas on obtiens Card (A)=1

pour l'écriture descriptive des éléments d'un ensemble A si on note A={a1,a2,...,an } cela signifie que les "ai" (avec i de 1 à n) appartiennent à l'ensemble A

de plus en écrivant A={a1,a2,...,an } on vérifie l'équivalence logique : ( ai=aj )<=> ( i=j )
ce qui signifie que obligatoirement si i et j sont différent alors ai et aj sont deux éléments distincts de l'ensemble A

Ainsi Zermelo définit six axiomes

(cela va nécessiter des explications mais je les écrits déjà)

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule (bon cela va nécessiter quelques explications ) que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels  P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

troisième axiome:axiome de la paire
qui stipule que si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme uniques éléments A et B
on note {A,B} ce nouvel ensemble

quatrième axiome:axiome de l'union
qui stipule que si A et B sont des ensembles alors l'ensemble A  "UNION" B = {x|x "in" A  + |x "in" B  }
rappel -de l'apparté écrit en vert : + qui signifie le symbole du "or" en logique
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux

cinquième axiome:axiome de puissance
qui stipule que pour tout ensemble A alors il existe un ensemble noté P(A)
-attention à ne pas confondre avec la notation précédente concernant les prédicats voir deuxième axiome-
dont noté P(A) et qui possède pour éléments tous les sous ensembles de A (cela va nécessiter des explications)

sixième axiome:axiome de l'infini
il sera décrit plus loin

______________________________________________________________________

premier axiome:axiome d'extentionnalité
qui stipule que deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments (on rappelle que l'élément d'un ensemble est toujours lui même un ensemble)

pour cet axiome là on a pas grand chose à dire sauf qu'on ne peut pas savoir si A=B lorsque  A et B sont des ensembles car en fait on ne sait pas ce qui fera que l'on dira que deux ensembles ont les mêmes éléments
ça nous avance pas beaucoup en tout cas pour l'instant
on doit juste se rappeler cette phrase et la tenir pour vraie(comme pour tous les axiomes ceux-ci sont tenus pour vrais)
deux ensembles A et B sont égaux si et seulement si ils ont les mêmes éléments
on prend cet axiome tel qu'il est, à défaut d'en savoir plus , au moins on sait ça (cette phrase)


______________________________________________________________________

deuxième axiome:Shéma d'axiomes de compréhension non restreint
qui stipule  que si P est un prédicat de rang quelconque mais libre en x et si A est un ensemble alors l'ensemble des éléments de A pour lesquels  P est vrai est aussi un ensemble
on le note {x|x "in" A|P(x)}
(rappel) la notation x "in" A signifiant que l'élément x appartiens à l'ensemble A

là par contre on passe à autre chose : ça demande des explications

en premier lieu : une proposition possède une valeur logique et quand Zermelo a présenté ses axiomes il parlait de la valeur logique d'une proposition qui est en fait l'élément d'un ensemble definit par une algebre de Boole
si l'ensemble sur lequel est construit cet algebre est  {0,1} alors dans ce cas les propositions sont soit de valeur 0 (fausses) soit de valeur 1 (vraies)

ATTENTION: ici parler des deux éléments 0 et 1 n'a strictement aucun rapport avec des entiers naturel
ici il s'agit d'une tout autre symbolique: la symbolique donnant une valeur à une proposition (en dehors de ce qu'elle peut dire)  
mais en apparté comme on le verra plus loin : dans une algèbre de Boole rien interdit que l'ensemble possède plus de deux éléments mais bon on en reparlera
ici on parle de logique d'ordre zéro qui en fait est le calcul des propositions et de plus binaire : c'est à dire que l'ensemble sur lequel est construit cet algebre, possède que deux éléments

ensuite toujours en ce qui concerne ce deuxième axiome

pour toute proposition P on notera v(P) sa valeur

et de plus quelque soit l'algebre de Boole qui definie la logique d'ordre zéro (binaire ou pas)

lorsque v(P)=0 on dira que P est fausse

lorsque v(P)=1 on dira que P est vraie

en apparté on a vu les connecteurs  logiques et d'autres symboles logiques

en ce qui concerne les prédicats

un prédicat P (majuscule ) est une proposition p (minuscule) dans laquelle on stipule par des quantificateurs...

le quantificateur "exists" signifie : "il existe"

et le symbole "nexist" pour signifier "il n'existe pas"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

...donc par des quantificateurs qui s'exercent sur une ou plusieurs variables dites variables liées à ces quantificateurs

que la ou les variables libres , parmis une quantitée de variables fixées par les quantificateurs , vérifient la proposition p

on va prendre un exemple mais avant il faut bien faire attention à distinguer variable liée et variable libre

une variable liée ne possede pas d'identité propre : elle peut être remplacée par n'importe qu'elle autre variable qui n'apparait pas dans une formule

ainsi par exemple

"exists" x,(x<y) est identique à "exists" z,(z<y) en fait la seule variable libre et qui possede une identitee propre c'est y
on peut remplacer x par n'importe qu'elle varible mais pas par y

sachant qu'on a dit que  "exists" x,(x<y) et donc que y possede une identitée propre alors il sera interdit de lier y par un quantificateur

car ce "y" est quelque chose possedent une existence concrète contrairement aux variables liées

enfin : le rang d'un prédicat designe la quantité de variables librres qu'il contiens

par exemple :  "forall"x<y est un prédicat de rang 1 car il n'y a qu'une seule variable libre (c'est "y")

et pour terminer en ce qui concerne ce deuxieme axiome

on considere la terminologie

"exists"x,A(x)  signifie qu'il existe un terme x pour lequel la relation A est vrai (il peut même en exister plusieurs)

"forall"x,A(x)  signifie que A est vrai pour tout x

{x|A(x)} est un ensemble par lequel la relation A est vrai pour tous les éléments de cet ensemble

de plus si un element verifie cette relation alors cet élément appartiens à cet ensemble

le concept de l'inclusion
Soient deux ensembles E et F et une relation A(x):=(x "in" F)=>(x "in" E),"forall" x,A(x)
signifie qu'il existe deux ensembles E et F tels que tous  les éléments de F appartiennent aussi à l'ensemble E

on notera  : F 'inc" E et qui signifie que F est inclus dans E

par le schéma d'axiome de compréhension non restreint (le deuxième axiome) on construit l'ensemble F

que l'on note F={x|A(x):=x "in" F => x "in" E| P:="forall" x,A(x)}

ici P est un prédicat de rang 1 et A(x) la proposition qui doit se vérifier
l'ensemble des éléments de E pour lequel P est vrai est l'ensemble F
on vérifie l'équivalence logique (E=F)<=>(E "inc" F . F "inc" E)

c'est donc à partir du deuxième axiome et avec le concept de l'inclusion qui en découle que le premier axiome prend tout son sens

le premier axiome (axiome d'extentionnalité) disait que A=B si et seulement si A et B ont les mêmes éléments mais on ne savait pas comment cela était vérifiable

à présent on sait que A=B  SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

et de plus on dispose à présent du premier concept de la théorie des ensembles : celui de l'inclusion

autre symbole
x "neq" y qui signifie x non égal à y



concept de la complémentarité

soient E et F deux ensembles, alors si

E\F est un ensemble que uniquement si F "inc" E , dans le cas contraire E\F n'a aucune signification
attention dire d'un objet maths qu'il n'a aucune signification cela reviens à dire que cet objet là n'a aucun sens
bref il ne possède aucune legitimité d'existence

donc si  F "inc" E dans ce cas alors E\F est un ensemble que l'on nomme le complémentaire de F dans E

cet ensemble se construit selon

E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

cet ensemble existe que uniquement si F est inclus dans E dans le cas contraire il est absurde et ne possède aucune légitimité d'existence

en fait E\F désigne l'ensemble des éléments de E qui n'appartiennent pas à F

théorême de l'ensemble vide

Soit E un ensemble, par conséquent comme on l'a vu dans le premier concept celui de l'inclusion on vérifie donc E "inc" E
et aussi  comme on l'a vu dans le deuxième concept celui de la complémentarité E\E existe

or quelque soit un élément qui serait dans E\E alors il faudrait qu'il soit à la fois dans E et à la fois abscent de E

ce qui est impossible

il résulte donc que E\E est un ensemble vide

de plus si E est lui même vide on vérifie quand même E "inc" E

notation Ø pour désigner l'ensemble vide



théorême de l'unicité

Soit E un ensemble alors si x "in" E   et   y "in" E tels que x=y on démontre que x et y sont un seul et même élément de E

admettons que E={x,y} "neq" {x} tandis que x=y
posons F={y} on vérifie donc F "inc" E de sorte que E\F={x}
mais étant donné que x=y il en résulte donc que E\F={y} or on a dit que y "in" F ce qui est absurde



le théorême de la totalité

ce théorême démontre une chose très importante : il n'existe pas d'ensemble de tous les ensembles

rien interdit dans l'axiomatique de Zermelo qu'il puisse exister des ensembles (un peu bizarres certes mais c'est un jugement de valeur que la notion de bizarrerie) que des ensembles puissent s'appartenirs à eux mêmes
E  est un ensemble et si E s'appartiens à lui même alors E "in" E

cependant on peut demontrer que Ø "notin" Ø
en effet car si Ø est vide il ne peut rien contenir

il résulte donc que dans l'axiomatique de Zermelo il existe deux catégories d'ensembles

les ensembles qui s'appartiennent à eux mêmes et sont de types E "in" E et les autres qui sont de types E "notin" E

on démontre qu'il n'existe pas d'ensemble E tel que pour tout ensemble F on verifie F "in" E

en effet si cet ensemble existe alors il est tel que "forall" K , un ensemble alors E "notin" K et K "in" E

or si E est de type  E "in" E alors il existe K=E tel que E "in" (K=E) or il faut que E "notin " K

si E est de type  E "notin" E alors il existe K=E tel que E=K "notin" E or il faut que K "in" E


troisième axiome:axiome de la paire

Si A et B sont des ensembles alors il existe un nouvel ensemble qui contiens comme unique éléments : A et B

on le note {A,B}

par le théorême de l'unicité alors si de plus A=B on obtiens comme nouvel ensemble l'ensemble {A}

mais attention ici A "neq" {A} ce ne sont pas du tout les mêmes ensembles


quatrième axiome:axiome de l'union
Si A et B sont des ensembles, alors A "UNION" B ={x | (x "in" A)+(x "in" B)} existe
cet opérateur "UNION" est associatif de sorte que
( A "UNION" B)  "UNION" C =  A "UNION" (B  "UNION" C )
et on peut noter
( A "UNION" B)  "UNION" C =  A "UNION" B  "UNION" C
de plus il est commutatif de sorte que
A "UNION" B=B  "UNION" A

concept de l'intersection
on note A "INTER" B={ x |  (x "in" A).(x "in" B)}
l'opérateur "INTER" est associatif et commutatif
concept d'entier naturel
On construit tout entier naturel en construisant un ensemble fini dont le cardinal désigne cet entier

par le deuxième axiome on a vu le concept d'ensemble vide Ø ainsi Card(Ø)=0
par le troisième axiome on peut construire l'ensemble {Ø} ainsi Card ({Ø})=1
par le troisième axiome on peut construire l'ensemble {Ø,{Ø}} ainsi Card ({Ø,{Ø}})=2

par le troisième axiome on construit les ensembles {Ø},{{Ø}},{{Ø,{Ø}}}
par le quatrième axiome on construit l'ensemble {Ø} "UNION" {{Ø}} "UNION" {{Ø,{Ø}}}={Ø,{Ø},{Ø,{Ø}}}
ainsi  Card ({Ø,{Ø},{Ø,{Ø}}})=3
on poursuit en utilisant le troisième axiome en construisant les ensembles
{Ø},{{Ø}},{{Ø,{Ø}}},{{Ø,{Ø},{Ø,{Ø}}}} et on utilise le quatrième axiome pour obtenir l'ensemble de cardinal 4

et ainsi de suite...

cinquième axiome:axiome de puissance

pour tout ensemble A il existe un ensemble noté P(A), qui possède pour éléments tous les sous ensembles de A
autrement dit P(A)={X | X "inc" A   }
pour un ensemble A de cardinal n donc pour Card(A)=n alors par recurrence on démontre que Card (P(A))=2^n
par exemple
pour A=Ø donc Card (A)=0 alors P(A)={Ø} et donc Card (P(A))=1
pour A={a_1} alors  P(A)={Ø,{a_1}} et donc Card (P(A))=2
pour A={a_1,a_2} alors  P(A)={Ø,{a_1},{a_2},{a_1,a_2}} et donc Card (P(A))=4
pour A={a_1,a_2,a_3} alors  P(A)={Ø,{a_1},{a_2},{a_3},{a_1,a_2},{a_1,a_3},{a_2,a_3},A} et donc Card (P(A))=8
et ainsi de suite par récurrence

concept d'algebre
Soit X un ensemble et soit P(X) l'ensemble des ses parties
alors un sous ensemble K de P(X)est appelé une algebre (ou algebre de parties de X) si on verifie
Ø "in" K
A "in" K => X\A "in" K*a,B "in" K => A "UNION" B "in" K

notion superficielle d'algebre de Boole
on entre pas dans les détail ici car il manque de très nombreux concepts
une algebre de Boole se definie dans P(E) pour tout e non vide
l'élément 0 de cet algebre correspond à l'element Ø de  P(E)
l'élément 1 de cet algebre correspond à l'element E de  P(E)
la loi +  de cet algebre correspond à la loi "UNION"
la loi .  de cet algebre correspond à la loi "INTER"
la bijection \x correspond à l'opération E\x qui donne le complémentaire de x dans E

sixième axiome:axiome de l'infini
si X est un ensemble alors on définit X^+ le successeur de X comme étant X "UNION" {X}
ceci reste possible par le troisième et quatrième axiome
et par eux on a construit les entiers naturels

l'axiome de l'infini stipule qu'il existe un ensemble contenant l'ensemble vide et le successeur de chacun de ses ensembles
le plus petit des ensembles possédant ces proprietés se nomme |N l'ensemble des entiers naturels
on pose Card (|N)=Aleph_0 est un infini actuel

symboles
les sept symboles suivants sont des connecteurs logiques en logique binaire d'ordre zéro(je m'explique ici sur cette terminologie)  
<=> qui signifie le symbole d'équivalence logique
=> qui signifie le symbole de l'implication logique
. qui signifie le symbole du "AND" en logique
+ qui signifie le symbole du "OR" en logique
++ qui signifie le symbole du "lor" ou "XOR" en logique dit "OR" exclusif
T qui signifie le symbole du connecteur donnant toujours un résultat vrai
┴ qui signifie le symbole du connecteur donnant toujours un résultat faux

par ailleurs on considère aussi le symbole :
¬ qui signifie le symbole de la négation d'une proposition

 en logique binaire d'ordre zéro on considère toute proposition P est une déclaration possédant une valeur de vérité :
soit VRAI, soit FAUSSE
pour une proposition P on notera v(P) sa valeur de vérité
si P est Vrai on notera v(P)=1
si P est fausse on notera v(P)=0

 ¬ qui signifie le symbole de la négation d'une proposition
si P est Vrai alors dans ce cas ¬ P est une proposition fausse
en fait ¬ P=Q ici P et Q sont des propositions et si P est Vrai alors dans ce cas Q est une proposition fausse car ici ¬P=Q

de même  si P est Fausse alors dans ce cas ¬ P est une proposition vraie

 calcul des proposition en logique binaire d'ordre zéro
P et Q sont des propositions alors :
P <=> Q = R est aussi une proposition qui est toujours vraie si et seulement si P et Q possèdent la même valeur de vérité
P => Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P est vrai tandis que Q est fausse
P . Q = R est aussi une proposition qui est toujours fausse sauf si uniquement P et Q sont vraies
P + Q = R est aussi une proposition qui est toujours vraie sauf si uniquement P et Q sont faux  
P ++ Q = R est aussi une proposition qui est toujours vraie sauf si uniquement  P et Q possèdent la même valeur de vérité  
P T Q = R est aussi une proposition qui est toujours vraie quelques soient P et Q
P ┴ Q = R est aussi une proposition qui est toujours fausse quelques soient P et Q

a "appartiens à" A et on note a "in" A de l'anglais

la non appartenance notée  a "notin" A

le quantificateur "exists" signifie : "il existe"

la non existence notée "nexists"

le quantificateur "forall" signifie : "tout" ou plus explicitement "quelque soit"

:= ce symbole dit que ce qui s'y trouve à gauche est defini par ce qui s'y trouve à droite
un peu comme pour u n dictionnaire ou pour un mot
maison := définition du mot maison

F "inc" E et qui signifie que F est inclus dans E
la non inclusion notée F "ninc" E


égalité de deux ensembles A=B
A=B SI ET SEULEMENT SI
A est inclus B et aussi B est inclus dans A

formalisé ici par la notation

(A=B) <=> ((A "inc" B) . (B "inc" A))

la non égalité de deux ensembles A "neq" B

le complémentaire de F dans E et noté E\F selon
E\F={x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

de sorte que si F "ninc" E alors "nexists" X tel que X= {x | F "inc" E | x "in" E |x "notin" F | A(x):=(x "in" F)=>(x "in" E) }

notation Ø pour désigner l'ensemble vide

l'union A "UNION" B ={x | (x "in" A)+(x "in" B)}

l'intersection A "INTER" B={ x |  (x "in" A).(x "in" B)} 

Posté par
bleuciel
re : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 12:50

euh... je ne sais pas si tout ça est ma réponse ou je dois la chercher moi-même

Posté par Profil amethystere : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 12:52

il faut tout lire et prendre son temps chef (pardon camarade chef)

Posté par
carpediem
re : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 15:57

salut


il suffit de connaître les verbes \in  et \subset ....

Posté par
Robot
re : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 16:28

Le fait que l'ensemble vide est une partie de E (pour n'importe quel ensemble E) n'est pas une convention. C'est juste une conséquence logique de la définition de "A est une partie de E" :
\forall x\ (x\in A \Rightarrow x\in E)
C'est bien sûr vérifié pour A=\emptyset. Tout élément de l'ensemble vide est élément de E, puisque l'ensemble vide n'a pas délément.

Posté par
luzak
re : comprendre la relation entre l'ensemble vide et un ensemble 15-02-15 à 17:41

Bonjour !

bleuciel a écrit :  "je voudrais comprendre pourquoi on a :
E E
et E, P(E)"

Si E est un ensemble d'ensembles, il se pourrait que soit aussi un élément de E. Mais cela peut être faux.
Par conséquent, on ne peut écrire E que dans certains cas très particuliers.
Cependant, dans tous les cas l'ensemble est une partie de E, ce qu'on écrit E.

Dans tous les cas, étant une partie de E, il est normal qu'il soit un élément de l'ensemble de toutes les parties de E, ensemble qui est noté P(E).

Posté par
bleuciel
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 12:28

Bonjour,

Citation :
Tout élément de l'ensemble vide est élément de E, puisque l'ensemble vide n'a pas délément.

A ce niveau, il y a une chose que je ne comprends pas : on peut dire que   E car tout ses éléments sont éléments de E or n'a pas d'éléments à ce moment, il faut choisir soit :
1) aucun élément ou rien toujours à E DONC E
2) aucun élément ou rien E  donc n'est pas inclus dans E

IL Doit bien avoir une convention pour trancher, je ne vois pourquoi 1) est plus légitime que 2) car je dirais que comme E est non vide ou on le suppose alors il a des éléments donc on sait ça mais après est-ce qu'il a aucun élément au pas, perso, je dirais que non il a des élément donc il n'a pas aucun élément donc je pencherais plus vers 2)

Merci de m'expliquer ce qui cloche dans mon raisonnement ou bien il n'y a pas de raisonnement à faire c'est une convention qui donne cohérence au maths, je ne sais pas...  

Posté par
carpediem
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 13:31

peux-tu trouver un élément de l'ensemble vide qui ne soit pas dans un ensemble E ?

Posté par
bleuciel
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 13:53

non apparemment, mais puis-je trouver un élément de l'ensemble vide qui soit dans E ?

ça tourne en rond, il faut à mon avis une convention et c'est justement ma question : est-ce une convention ?

Posté par
luzak
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 17:27

Bonjour !
C'est de la logique : l'implication p\implies q est, par définition, la disjonction " non p ou q ".
Donc si p est faux, l'implication est vraie : dans ton cas x\in\emptyset\implies x\in E est vraie puisque la proposition x\in\emptyset est fausse.

Posté par
WilliamM007
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 18:01

"p implique q" est vrai si l'on ne peut pas trouver de situation où p est vraie et q est faux en même temps.

Ici "x xE" serait faux si l'on trouvait un élément x tel que x et xE.
Puisque aucun élément n'appartient à , on ne risque pas d'en trouver un particulier qui n'appartienne pas à E.
C'est donc que l'implication est vraie et E.

Posté par
Robot
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 19:30

Beaucoup de gens ont des difficultés avec l'ensemble vide. Pourtant, il relève des règles ordinaires de la logique, et le fait qu'aucun élément de E n'appartienne à l'ensemble vide n'est pas la négation du fait que tout élément de l'ensemble vide appartient à E. Comme ça a déjà été dit, la négation de ce dernier fait serait qu'il existe un élément de l'ensemble vide n'appartenant pas à E.
Aucune convention la-dedans, juste l'application de la règle commune.

Posté par
bleuciel
re : comprendre la relation entre l'ensemble vide et un ensemble 01-03-15 à 19:54

merci en tous cas, je vais réfléchir à vos réponses



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1675 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !