Inscription / Connexion Nouveau Sujet
Niveau seconde
Partager :

Dm : Valeurs absolues + utilisat° d'une droite graduée

Posté par
Soa
23-10-07 à 18:09

Bonsoir,j'ai un Dm à finir, que j'ai tout abord mal commencer...j'ai résolu l'équation or que c'était pas demandé...donc sa m'embrouille un peu donc j'aimerai bien qu'on m'aide un peu.

Additionner deux valeurs absolues en utilisant la droite graduée.  

Résoudre, dans , l'équation:
|x+2|+|x-5| = 11 (1)

1. On considère sur la droite numérique, les points A, B et Md'abscisses respectives -2, 5 et x.
Comment s'écrit l'équation (1)?

2. a)Si M[AB], montrer que MA+MB est constant.
Qu'en déduit-on?
   b)Si M appartient à la demi-droite d'origine A et ne contenant pas B, montrer que (1) s'écrit:
2MA+AB = 11
En déduire la solution correspondante de l'équation (1).
   c)Si M appartient à la demi-droite d'origine B et ne contenant pas A, transformer (1) (s'inspirer du b) ) et trouver la solution correspondante.

3. Conclure

Ma réponse:

1.D'abord j'ai tracé la droite graduée, en plaçant les points  et l'absciss x avec un point d'interrogation.
|x+2|+|x-5| = 11

|x+2| = d(x;-2) et |x-5|= d(x;5)
donc l'équation est sous cette forme:
|x-(-2)|+|x+5|=11
(je ne sais aps si c'est bon..)

2. a) Si M[AB],
d(BA)= |xB-xA|       |x+2|+|x-5|= 11
     = |5-(-2)|       x+2 + x-5 = 11
     = |5+2|              2x -3 = 11
     = |7|                   2x = 11+3
     = 7                      x = 14/2
                              x = 7
7 est la distance entre le point A et le point B
donc ..on peut en déduire que 7 est constant, deplus on sait que 11 l'ai aussi.
Après pour moi j'ai l'impression que c'est le broullard totale et je ne sais mm aps si c'est bon donc bon
Je vous remerci d'avance

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:17

1)
|x+2| = MA
|x-5| = MB

donc (1) s'écrit MA + MB = 11

2-a) MA + MB = 11 donc MA + MB est constant...puis voir ton cours...

Posté par
Soa
re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:22

Ah, donc en fait tout est faux...du moin pas totalement pour la 1mais je pensais pas que que sa serait une écriture littéral :\
En fait pout la 2) c'était de la logique..(j'ai aps l'air conne moi ^^')
Mais il faut démontré MA+MB est constant, je vois pas comment on peut le faire?

Mais en tout cas merci de ta réponse.

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:24

MA + MB est TOUJOURS égal à 11, donc MA + MB est bien CONSTANT: MA + MB ne change pas de valeur...c'est TOUJOURS 11.

Posté par
Soa
re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:27

Ah ok, je voyais pas les choses comme sa merci ^^
Je me met au travaille
Encore merci

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:32

b)Si M appartient à la demi-droite d'origine A et ne contenant pas B, montrer que (1) s'écrit:
2MA+AB = 11

Si tu fais un dessin avec M, A et B. D'après l'énoncé, M est "avant" A et donc tu as:

MB = MA + AB

(1) s'écrit MA + MB = 11 avec MB = MA + AB

Donc MA + (MA + AB) = 11.

Soit 2MA + AB = 11

Mais AB = 7 (tu l'as dit toi même plus haut: d(B;A) = 7)

Donc 2 MA + 7 = 11

Donc 2MA = 4 et MA = 2.

Question: quel est l'ensemble des points M tels que MA = 2? C'est à dire que tes points M se trouvent à la distance 2 du point A...

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:36

c)Si M appartient à la demi-droite d'origine B et ne contenant pas A, transformer (1) (s'inspirer du b) ) et trouver la solution correspondante.


Ici, sur un dessin, M est après B. Tu auras donc MA = MB + AB

(1) s'écrit MA + MB = 11

donc (MB +AB) + MB = 11 et tu continues...comme ci-dessus au b)...

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:43

ATTENTION POUR LA QUESTION 1!!!!

On a MA + MB qui doit être égal à 11. Mais comme MA + MB = AB (car M est entre A et B ) alors MA + MB = AB = 7.

Donc si M appartient à [AB], il n'exite aucun point M tel que MA + MB = 11.

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:44

Pour la conclusion, tu récapitules chacun des cas.

Bonsoir et bon courage.

Posté par
Soa
re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 18:49

Merci, pour la 2 j'ai trouvé la même chose que toi.
Cependant, pour la question 1 j'ai pas compris ta dernière phrase "il n'exite aucun point M tel que MA + MB = 11."
quoique...
MA + MB = 7...j'ai pas tout compris là.
Parcontre est ce qu'on peut dire que M est égal à l'abscisse 2, enfin je veux dire, je dois la représentais sur la droite draguée??

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 23-10-07 à 23:34

Tu dis: "MA + MB = 7...j'ai pas tout compris là.
Par contre est ce qu'on peut dire que M est égal à l'abscisse 2, enfin je veux dire, je dois la représentais sur la droite draguée??"

Bon, reprenons: Pour MA + MB = 7: fais un dessin avec M entre A et B: MA + MB = AM + MB = AB = 7.

Mais on a vu que l'on a toujours [avec (1)] MA + MB = 11

On ne peut avoir à la fois MA + MB = 11 et MA + MB = 7. Donc si M est entre A et B, on ne peut avoir MA + MB =11: il n'existe AUCUN point M entre A et B tel que MA + MB = 11.

on a vu aussi:
b)Si M appartient à la demi-droite d'origine A et ne contenant pas B, montrer que (1) s'écrit:
2MA+AB = 11 et que l'on arrive à MA = 2.

Donc le distance de M à A est 2 sachant que l'abscisse de A est -2.

L'abscisse de M est donc -2 - 2 = -4 ou -2 + 2 = 0 (Ici aussi fais un dessin avec M avant (à gauche) du point A.

Tu remarques que -4, ça marche: c'est bien AVANt le point A, mais que ça ne marche pas pour 0 qui est à droite de A.

Donc si M appartient à la demi-droite d'origine A et ne contenant pas B, l'équation: |x+2|+|x-5| = 11 a une et une seule solution: x = -4.



c)Si M appartient à la demi-droite d'origine B et ne contenant pas A, c'est à dire si M est à droite de B, alors on a:

AM + MB = 11

Mais AM = AB + BM (faire un dessin)

donc
AM + MB = 11 devient AB + BM + MB = 11
Soit AB + 2MB = 11 ou encore 7 + 2MB = 11 soit 2MB = 4 soit MB = 2
La distance de M à B est donc 2.
B a pour abscisse 5.
Donc l'abscisse de M est 5+2 = 7 ou 5-2 = 3.
7, ça marche: on est bien à droite de B.
3, ça ne marche pas: on n'est pas à droite de B.

Donc si M appartient à la demi-droite d'origine B et ne contenant pas A,  l'équation: |x+2|+|x-5| = 11 a une et une seule solution: x = 7.

Enfin:
3. Conclure.

L'équation: |x+2|+|x-5| = 11 admet deux solutions et deux seulement: x = -4 et puis x = 7.

En effet, on a bien épuisé tous les cas:
M entre A et B: pas de solution.
M à droite de A: 1 solution qui est x = -4.
M à gauche de B: 1 solution qui est x = 7.

Bonne journée pour demain!

Posté par
Soa
re : Dm : Valeurs absolues + utilisat° d'une droite graduée 24-10-07 à 20:06

Je te remerci pour les explications j'ai très bien compris
Et dailleur grace à toi (aujourd'hui on aeu contrôle suprise) je vaisa voir une bonne note, vu qu'il a repris cet exercice dans notyre DST
Merci pour tout
Bonne soirée

Posté par marc592 (invité)re : Dm : Valeurs absolues + utilisat° d'une droite graduée 25-10-07 à 00:41

Mais de rien!

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1220 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !