bonjour tout le monde
j'ai besoin de votre aide pour cet exercice s'il vous plait
soit E un R-espace vectoriel de dimension 3
soit ua l'application lineaire E L(E) tel que u² et u a la puissance 3 = avec l'endomorphisme nul de E
1. monter que u n'est pas un autorphisme de E
2.montrer qu'il existe e1 E tel que (e1,u(e1),u²(e1)) est une base de E
3. en déduire que rg(u)=2.
merci beaucoup pour votre soutient
*** message déplacé ***
Bonjour enigmatte.
Tu es sur le topic de quelqu'un d'autre. Tu dois ouvrir ton propre topic (nouveau topic tout en haut de la page).
A plus RR.
*** message déplacé ***
je comprends pas ce que vous voulez dire par ouvrir un nouveau topic. merci de m'expliquer
Bonjour Nightmare! Les grands esprits continuent de se rencontrer!
Bonjour raymond!
Pour enigmatte: 1) Si u3=0, le noyau de u ne peut pas être réduit à {0}, donc u n'est pas injective (ni surjective, puisque u3 ne l'est pas).
2) Choisis un vecteur x tel que u2(x)0, et regarde x,u(x), u2(x).
Bonjour enigmatte,si tu veux de l'aide pour ton exercice post dans ton exercice...mais n'ouvre pas un autre topic,ça sert à rien,regarde bien comment ça fonctionne...va faire un tour la: [lien]
amicalement robby3
*** message déplacé ***
Bonjour tout le monde,je complete un peu parce que enigmatte semble avoir encore quelques difficultés...
Comme le dit Camélia dans le message précédent,tu prend un vecteur x non nul,tel que comme aprés tu regarde: pour tout a,b,c dans R...Il vient ensuite:
je te laisse poursuivre...dis nous si tu as encore du mal aprés ça...
slt tt le monde
ben je me demande si la famille suivante (x,f(x),f²(x))est une famille libre de E.est-t-il necessaire que E et cette famille aient la meme dimension?
parce que ce que sinon.alors la il va falloir que m aidiez encore plus.
merci de me repondre
resalut
dsl je vais devoir vous eclaircir les choses.parce que ma question n est pas claire.ce que je vx dire c est est ce que le cardinal d une famille libre d un espace vectoriel dois etre egal a la dimension de cet espace?
merci
Bonsoir
Non pas forcément... une famille libre dont la dimension est celle de l'espace est une base. Une famille libre c'est simplement une famille de vecteurs non liés, ils ne sont pas forcément générateurs.
Par contre, on sait qu'une famille libre a au plus n vecteurs où n est la dimension de l'ev considéré.
Vous devez être membre accéder à ce service...
Pas encore inscrit ?
1 compte par personne, multi-compte interdit !
Ou identifiez-vous :