Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

plan médiateur d'un segment

Posté par
lucie_
16-03-11 à 14:57

Bonjour, j'ai un problème pour un exercice qui est:

Le plan médiateur d'un segment [AB] est le plan qui passe par le milieu de [AB] et est perpendiculaire à la droite (AB).
a)Démontrer que le plan médiateur du segment AB est l'ensemble des points M de l'espace tels que MA=MB.
b) Dans un repère orthonormal, on considère les points A(3;-2;-5) et B(1;4;3). Déterminer une équation cartésienne du plan médiateur du segment [AB].

Je me suis reportée au sujet déjà répondu Produits scalaires dans l'espace mais je ne comprends pas la réponse, donc si vous pourriez m'éclairer un peu plus

Merci!

Posté par
MisterJack
re : plan médiateur d'un segment 16-03-11 à 18:40

Hello,
a)
pour démontrer la première implication MPMA=MB il faut considérer les deux triangles rectangles MIA et MIB ( voir figure )...ils sont isométriques puisque les côtés de l'angle droit ont la même longueur...dsonc MA=MB.
pour démontrer la seconde implication MA=MBMP. Puisque M est à la même distance de A et de B il appartient à la médiatrice de [AB] ( dans le plan (AMB) ) qui est d'ailleurs (MI) et qui forcément se trouve dans le plan P puisqu'elle est perpendiculaire à la droite (AB). Conclusion M P.

plan médiateur d\'un segment



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1732 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !