Bonjour,
j'ai fais cet exercice en cours récemment et je n'ai pas très bien compris, si quelqu'un pourrait le reprendre avec moi ça serait gentil
On se propose dans cet exercice, d'étudier des propriétés d'un solide de l'espace.
L'espace est rapporté à un repère orthonormal (O;i;j;k)
.
On considère les points A(3 ; 4 ; 0) ; B(0 ; 5 ; 0) et C(0 ; 0 ; 5).
On note I le milieu du segment [AB].
1. Faire une figure où l'on placera les points A, B, C, I dans le repère (O;i;j;k)
.
2. Démontrer que les triangles OAC et OBC sont rectangles et isocèles.
Quelle est la nature du triangle ABC ?
3. Soit H le point de coordonnées (15/19;45/19;45/19)
a. Démontrer que les points H, C, I sont alignés.
b. Démontrer que H est le projeté orthogonal de O sur le plan (ABC).
c. En déduire une équation cartésienne du plan ABC.
4. Calculs d'aire et de volume.
a. Calculer l'aire du triangle OAB. En déduire le volume du tétraèdre OABC.
b. Déterminer la distance du point O au plan (ABC).
c. Calculer l'aire du triangle ABC.
J'ai fais la figure mais je n'arrive pas à démontrer que les triangles sont rectangles et isocèles .. je sais que pythagore doit intervenir mais je ne sais pas comment faire
merci