Inscription / Connexion Nouveau Sujet
Niveau terminale
Partager :

Une application du théorème de Gauss (2)

Posté par
mathetudiant
18-03-21 à 11:26

Bonjour.
Dans cet exercice on doit utiliser le corollaire du théorème de Gauss qui dit:
(b \mid a et c \mid a et PGCD(b;c)=1) (bc \mid a)
--------L'énoncé-------------------------------------------------------------------------------------
Déterminer tous les enties naturels n tels que n105 et: n5[139]    et  n5[140]
--------Ma réponse---------------------------------------------------------------------------------

On a les équivalences suivantes:  n5[139] n-50[139]     et     n5[140] n-50[140]

D'autre termes, (n-5) est divisible par 139 et par 140. Puisque 139 est premier avec 140 (le résultat est trivial. De plus on peut montrer ça en utilisant l'algorithme d'Euclide).

Alors, (n-5) est divisible par 139140. Ce qui donne: n-50[19460]

Par suite, n-50[19460] (k) n-5=19460k
                                                         (k) n=19460k+5

À partir de la condition (n105) (*), on tire:   019460k+5105

Cherchons alors les valeurs de l'entier k pour lesquelles n vérifie la condition (*). Il donne successivement les équivalences suivantes:

                      019460k+5105 -519460k100000-5

                                                                 \frac{-5}{19460}k\frac{99995}{19460}

                                                                 \frac{-5}{19460}k\frac{19460\times 5+2695}{19460}

                                                                 \frac{-5}{19460}k5+\frac{2695}{19460}

                                                     Donc:    k \in \left\{0;1;2;3;4;5 \right\}

        
Enfin, l'ensemble des entiers n est:  E=\left\{5+19460k/ k\in \left\{0;1;2;3;4;5 \right\} \right\}

            Ainsi, E=\left\{5; 19465; 38925; 58380; 77845; 97305 \right\}

Posté par
Yzz
re : Une application du théorème de Gauss (2) 18-03-21 à 14:45

Salut,

OK.



Vous devez être membre accéder à ce service...

Pas encore inscrit ?

1 compte par personne, multi-compte interdit !

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1700 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !