Inscription Nouveau Sujet
Niveau première
Partager :

Démonstration de formules de trigonométrie

Posté par
ptitemama
11-03-12 à 16:01

Bonjour, je dois faire un exercice mais il y a pas mal de chose que je n'est pas compris donc si quelqu'un peut me venir en aide svp.

1) On considère un repère orthonormé direct (O,I,J).
Soit C le cercle trigonométrique de centre O, et M et N les points du cercle C tels que:
(\vec{OI};\vec{OM})= b [2] et (\vec{OI}; \vec{ON}) = a [2] où a et b désignent deux nombres réel quelconques.


a) Faire une figure ( Je l'ai faite )
b) Exprimer en fonction de a et b les coordonnées des vecteurs \vec{OM} et \vec{ON}.
Je trouve \vec{OM}=(cos b ; sin b)  et  \vec{ON}=(cos a ; sin a ).
c) En déduire le produit scalaire \vec{OM}.\vec{ON} en fonction de a et b avec la formule
.= X*X+Y*Y

\vec{OM}.\vec{ON}= cos b * cos a + sin b *sin a = cos(b-a)
d)Conbien valent les distances OM et ON ?
OM=\sqrt{(cos b)² + (sin b)²}  et pour ON=\sqrt{(cos a)² + (sin a)²}
Je ne sais pas si l'on peut simplifier d'avantage.
e) Montrer, en utilisant la relation de Chasles pour les angles orientés, que: (\vec{OM},\vec{ON}) = a-b [2]
Cette question je n'ai pas réussis.
f) En utilisant la formule .=|||| * |||| * cos(,) , donner une autre expression du produit scalaire \vect{OM}.\vect{ON}.
Je trouve 1*1*cos(\vect{OM}, \vect{ON})= cos(b-a)=cos(a-b)
g)En utilisant les réponses des questions c) et f) démontrer que cos(a-b)= cos a * cos b + sin a * sin b
Je n'ai pas réussi.

2)En utilisant le fait que: cos(a+b)= cos(a-(-b)) et la formule cos(a-b)= cos a * cos b + sin a * sin b, démontrer alors que cos(a+b)=cos a * cos b - sin a * sin b

j'ai mis cos a * cos -b + sin a * sin -b = cos a * cos b - sin a * sin b
Je ne sais pas si c'est jutse cela qu'il faut faire.

3) En utilisant le fait que; sin(a+b) = sin(a-(-b)) et la formule cos(a-b)= cos a * cos b - cos a * sin b , démontrer alors que sin(a+b)=sin a * cos b + cos a * sin b
J'ai mis sin a * cos -b - cos a * sin -b = sin a * cos b + cos a * sin b

4)En utilisant le fait que: cos(2a)=cos(a+a) et la formule cos(a+b)=cos a * cos b - sin a *sin b , démontrer alors que cos(2a)= cos²a - sin²a.
J'ai mis cos(a) * cos a - sin a * sin a= cos²a - sin²a

5) En utilisant le fait que: sin(2a)=sin(a+a) et la formule sin(a+b)=sin a * cos b + cos a * sin b, démontrer alors que sin(2a)= 2cos a sin a
J'ai mis sin a(cos a +cos a)= sin a (2 cos a)= 2 cos a sin a

Voila donc si quelqu'un peut m'aider et me confirmer ce que j'ai fais merci.

Posté par
ptitemama
re : Démonstration de formules de trigonométrie 11-03-12 à 16:31

Personnes a d'idées ?

Posté par
Elisabeth67
re : Démonstration de formules de trigonométrie 11-03-12 à 16:37

Bonjour ptitemama

Pour 1d) , OM = ON = 1 ( rayon du cercle trigonométrique ) ( cos² + sin² = 1 pour tout )

1e) Il suffit d'écrire que (OM,ON) = (OM,OI) + (OI,ON) = -a + b

1g) D'après c) , le produit scalaire OM.ON = cos(a)cos(b) + sin(a)sin(b)
     D'après f) , le produit scalaire OM.ON = cos(a-b)

Posté par
ptitemama
re : Démonstration de formules de trigonométrie 11-03-12 à 16:47

Bonjour, merci d'avoir répondu.

1e) Faut que je trouve a-b et moi grâce a tes infos je trouves b-a. Est ce qu'au final c'est la même chose ?

Pareil pour le produit scalaire moi je trouve pas cos(a-b) mais cos(b-a)  

Posté par
Elisabeth67
re : Démonstration de formules de trigonométrie 11-03-12 à 16:58

Désolée , j'ai fait une confusion entre l'angle de M et celui de N
C'est évidemment -b+a

Posté par
ptitemama
re : Démonstration de formules de trigonométrie 11-03-12 à 17:11

Merci et est ce que quand je fais le produit scalaire OM.ON= cos(b-a) c'est pareil que cos(a-b) parce que moi j'arrive a cos(b-a)

Posté par
Elisabeth67
re : Démonstration de formules de trigonométrie 11-03-12 à 17:25

On a montré que (OM,ON) = a-b , donc pour f on trouve cos(a-b)

Pour g) , on a donc finalement cos(a-b)= cos(a)cos(b) + sin(a)sin(b)

cos est une fonction paire , on a aussi cos(b-a) = cos(a-b) ; ceci n'est pas possible par contre pour la fonction sin

Posté par
ptitemama
re : Démonstration de formules de trigonométrie 11-03-12 à 17:36

Le truc c'est que moi dans la question c je ne trouve pas cos(a-b) mais cos (b-a)

Posté par
Elisabeth67
re : Démonstration de formules de trigonométrie 11-03-12 à 17:40

Dans la question c , on se contente de trouver l'expression donnée par le produit scalaire cos b * cos a + sin b * sin a  ( qui est aussi égale à cos a * cos b + sin a * sin b )

Posté par
ptitemama
re : Démonstration de formules de trigonométrie 11-03-12 à 17:46

Ha d'accord sa y es je crois que j'ai compris Merci

Répondre à ce sujet

Seuls les membres peuvent poster sur le forum !

Vous devez être connecté pour poster :

Connexion / Inscription Poster un nouveau sujet
Une question ?
Besoin d'aide ?
(Gratuit)
Un modérateur est susceptible de supprimer toute contribution qui ne serait pas en relation avec le thème de discussion abordé, la ligne éditoriale du site, ou qui serait contraire à la loi.


Mentions légales - Retrouvez cette page sur l'île des mathématiques
© digiSchool 2016

Vous devez être membre accéder à ce service...

Pas encore inscrit ?

Ou identifiez-vous :


Rester sur la page

Inscription gratuite

Fiches en rapport

parmi 1119 fiches de maths

Désolé, votre version d'Internet Explorer est plus que périmée ! Merci de le mettre à jour ou de télécharger Firefox ou Google Chrome pour utiliser le site. Votre ordinateur vous remerciera !